This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299964 #8 Apr 06 2024 14:57:32 %S A299964 19,39,97,147,247,259,327,399,410,427,481,650,777,890,903,1010,1027, %T A299964 1130,1209,1267,1443,1490,1533,1677,1730,1767,1802,1813,1898,1911, %U A299964 1970,2037,2119,2210,2330,2378,2667,2793,2847,3050,3170,3297,3367,3477,3530,3603 %N A299964 Integers represented in more than one way by a cyclotomic binary form f(x,y) where x and y are prime numbers and 0 < y < x. %C A299964 A cyclotomic binary form over Z is a homogeneous polynomial in two variables which has the form f(x, y) = y^EulerPhi(k)*CyclotomicPolynomial(k, x/y) where k is some integer >= 3. An integer n is in this sequence if f(x,y) = n has more than one integer solution where f is a cyclotomic binary form and x and y are prime numbers with 0 < y < x. %H A299964 Étienne Fouvry, Claude Levesque, Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017. %o A299964 (Julia) %o A299964 function countA299928(n) %o A299964 R, z = PolynomialRing(ZZ, "z") %o A299964 K = Int(floor(5.383*log(n)^1.161)) # Bounds from %o A299964 M = Int(floor(2*sqrt(n/3))) # Fouvry & Levesque & Waldschmidt %o A299964 N = QQ(n); count = 0 %o A299964 P(u) = (p for p in u:M if isprime(ZZ(p))) %o A299964 for k in 3:K %o A299964 e = Int(eulerphi(ZZ(k))) %o A299964 c = cyclotomic(k, z) %o A299964 for y in P(2), x in P(y+1) %o A299964 if N == y^e*subst(c, QQ(x, y)) %o A299964 count += 1 %o A299964 end end end %o A299964 return count %o A299964 end %o A299964 A299964list(upto) = [n for n in 1:upto if countA299928(n) > 1] %o A299964 println(A299964list(3640)) %Y A299964 Cf. A293654, A296095, A299214, A299498, A299733, A299928, A299929, A299930, A299956. %K A299964 nonn %O A299964 1,1 %A A299964 _Peter Luschny_, Feb 25 2018