This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299966 #9 Feb 23 2018 11:12:00 %S A299966 1,0,1,1,1,1,2,1,3,3,3,3,5,5,5,2,8,5,13,6,13,10,21,5,11,18,11,14,34, %T A299966 15,55,3,26,33,23,13,89,59,54,14,144,38,233,28,31,105,377,10,47,31, %U A299966 106,57,610,23,60,32,206,185,987,38,1597,324,91,5,132,93,2584,111 %N A299966 Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions non-singleton skew-partitions. %C A299966 A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %D A299966 Bruce E. Sagan, The Symmetric Group, Springer-Verlag New York, 2001. %H A299966 Gus Wiseman, <a href="/A299966/a299966.png">The a(30) = 15 non-singleton tableaux of shape (321).</a> %e A299966 The a(25) = 11 tableaux: %e A299966 1 2 3 1 2 2 1 1 3 1 1 2 %e A299966 1 2 3 1 3 3 2 2 3 2 3 3 %e A299966 . %e A299966 1 2 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1 %e A299966 1 2 2 2 2 2 1 2 2 1 1 2 2 2 2 1 2 2 %e A299966 . %e A299966 1 1 1 %e A299966 1 1 1 %t A299966 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A299966 undptns[y_]:=DeleteCases[Select[Tuples[Range[0,#]&/@y],OrderedQ[#,GreaterEqual]&],0,{2}]; %t A299966 eh[y_]:=If[Total[y]=!=1,1,0]+Sum[eh[c],{c,Select[undptns[y],Total[#]>1&&Total[y]-Total[#]>1&]}]; %t A299966 Table[eh[Reverse[primeMS[n]]],{n,60}] %Y A299966 Cf. A000085, A056239, A063834, A112798, A122111, A138178, A153452, A238690, A296150, A296188, A297388, A299925, A299926, A299967. %K A299966 nonn %O A299966 1,7 %A A299966 _Gus Wiseman_, Feb 22 2018