cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A299966 Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions non-singleton skew-partitions.

This page as a plain text file.
%I A299966 #9 Feb 23 2018 11:12:00
%S A299966 1,0,1,1,1,1,2,1,3,3,3,3,5,5,5,2,8,5,13,6,13,10,21,5,11,18,11,14,34,
%T A299966 15,55,3,26,33,23,13,89,59,54,14,144,38,233,28,31,105,377,10,47,31,
%U A299966 106,57,610,23,60,32,206,185,987,38,1597,324,91,5,132,93,2584,111
%N A299966 Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions non-singleton skew-partitions.
%C A299966 A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%D A299966 Bruce E. Sagan, The Symmetric Group, Springer-Verlag New York, 2001.
%H A299966 Gus Wiseman, <a href="/A299966/a299966.png">The a(30) = 15 non-singleton tableaux of shape (321).</a>
%e A299966 The a(25) = 11 tableaux:
%e A299966 1 2 3   1 2 2   1 1 3   1 1 2
%e A299966 1 2 3   1 3 3   2 2 3   2 3 3
%e A299966 .
%e A299966 1 2 2   1 1 2   1 1 2   1 1 2   1 1 1   1 1 1
%e A299966 1 2 2   2 2 2   1 2 2   1 1 2   2 2 2   1 2 2
%e A299966 .
%e A299966 1 1 1
%e A299966 1 1 1
%t A299966 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A299966 undptns[y_]:=DeleteCases[Select[Tuples[Range[0,#]&/@y],OrderedQ[#,GreaterEqual]&],0,{2}];
%t A299966 eh[y_]:=If[Total[y]=!=1,1,0]+Sum[eh[c],{c,Select[undptns[y],Total[#]>1&&Total[y]-Total[#]>1&]}];
%t A299966 Table[eh[Reverse[primeMS[n]]],{n,60}]
%Y A299966 Cf. A000085, A056239, A063834, A112798, A122111, A138178, A153452, A238690, A296150, A296188, A297388, A299925, A299926, A299967.
%K A299966 nonn
%O A299966 1,7
%A A299966 _Gus Wiseman_, Feb 22 2018