A299967 Number of normal generalized Young tableaux of size n with all rows and columns weakly increasing and all regions non-singleton skew-partitions.
1, 0, 2, 3, 13, 32, 121, 376, 1406, 5030, 19632, 76334, 314582, 1308550, 5667494, 24940458, 113239394, 523149560, 2480434938, 11968944532, 59051754824
Offset: 0
Examples
The a(4) = 13 tableaux: 1 1 2 2 1 1 1 1 . 1 2 2 1 1 2 1 1 1 1 2 1 . 1 2 1 1 1 1 1 2 2 2 1 1 . 1 2 1 1 1 1 1 2 1 2 2 1 . 1 1 1 1 2 1 2 1
Crossrefs
Programs
-
Mathematica
undptns[y_]:=DeleteCases[Select[Tuples[Range[0,#]&/@y],OrderedQ[#,GreaterEqual]&],0,{2}]; ehn[y_]:=ehn[y]=If[Total[y]=!=1,1,0]+Sum[ehn[c],{c,Select[undptns[y],Total[#]>1&&Total[y]-Total[#]>1&]}]; Table[Sum[ehn[y],{y,IntegerPartitions[n]}],{n,15}]
Comments