A299968 Number of normal generalized Young tableaux of size n with all rows and columns strictly increasing.
1, 1, 2, 5, 15, 51, 189, 753, 3248, 14738, 70658, 354178, 1857703, 10121033, 57224955, 334321008, 2017234773, 12530668585, 80083779383, 525284893144, 3533663143981, 24336720018666, 171484380988738, 1234596183001927, 9075879776056533, 68052896425955296
Offset: 0
Keywords
Examples
The a(4) = 15 tableaux: 1 2 3 4 . 1 2 3 1 2 4 1 3 4 1 2 3 1 2 3 4 3 2 2 3 . 1 2 1 3 1 2 3 4 2 4 2 3 . 1 2 1 3 1 2 1 4 1 3 3 2 2 2 2 4 4 3 3 3 . 1 2 3 4
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50 (first 46 terms from Ludovic Schwob)
- D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific Journal of Mathematics, Vol. 34, No. 3 (1970), 709-727.
- Wikipedia, Young tableau
Crossrefs
Programs
-
Mathematica
unddis[y_]:=DeleteCases[y-#,0]&/@Tuples[Table[If[y[[i]]>Append[y,0][[i+1]],{0,1},{0}],{i,Length[y]}]]; dos[y_]:=With[{sam=Rest[unddis[y]]},If[Length[sam]===0,If[Total[y]===0,{{}},{}],Join@@Table[Prepend[#,y]&/@dos[sam[[k]]],{k,1,Length[sam]}]]]; Table[Sum[Length[dos[y]],{y,IntegerPartitions[n]}],{n,1,8}]
Formula
a(n) = Sum_{k=0..n} 2^k * A238121(n,k). - Ludovic Schwob, Sep 23 2023
Extensions
More terms from Ludovic Schwob, Sep 23 2023
Comments