A299957 The sum a(n) + a(n+1) always has at least one digit "1". Lexicographically first such sequence of nonnegative integers without duplicate term.
0, 1, 9, 2, 8, 3, 7, 4, 6, 5, 10, 11, 20, 21, 30, 31, 40, 41, 50, 51, 49, 12, 19, 22, 29, 32, 39, 42, 58, 13, 18, 23, 28, 33, 38, 43, 48, 52, 53, 47, 14, 17, 24, 27, 34, 37, 44, 56, 15, 16, 25, 26, 35, 36, 45, 46, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 0
Examples
1 + 9 = 10; 9 + 2 = 11; 2 + 8 = 10; 8 + 3 = 11; 3 + 7 = 10; 7 + 4 = 11; 4 + 6 = 10; 6 + 5 = 11; etc.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Nest[Append[#, Block[{k = 1}, While[Nand[FreeQ[#, k], DigitCount[k + #[[-1]], 10, 1] > 0], k++]; k]] &, {1}, 98] (* Michael De Vlieger, Feb 22 2018 *)
-
PARI
a(n, f=1, a=0, u=[a])={for(n=a+1, n, f&&if(f==1,print1(a","),write(f,n-1," "a)); for(k=u[1]+1, oo, setsearch(u, k)&&next; setsearch(Set(digits(a+k)),1)&&(a=k)&&break); u=setunion(u, [a]); u[2]==u[1]+1&&u=u[^1]); a} \\ M. F. Hasler, Feb 22 2018
Extensions
Extended to a(0) = 0 by M. F. Hasler, Feb 28 2018
Comments