This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A299989 #53 May 12 2020 20:59:27 %S A299989 0,1,0,3,4,1,0,9,24,22,8,1,0,27,108,171,136,57,12,1,0,81,432,972,1200, %T A299989 886,400,108,16,1,0,243,1620,4725,7920,8430,5944,2810,880,175,20,1,0, %U A299989 729,5832,20898,44280,61695,59472,40636,19824,6855,1640,258,24,1 %N A299989 Triangle read by rows: T(n,0) = 0 for n >= 0; T(n,2*k+1) = A152842(2*n,2*(n-k)) and T(n,2*k) = A152842(2*n,2*(n-k)+1) for n >= k > 0. %C A299989 T(n,k) is the number of state diagrams having k components of n connected summed trefoil knots. %C A299989 Row sums gives A001018. %D A299989 V. I. Arnold, Topological Invariants of Plane Curves and Caustics, American Math. Soc., 1994. %H A299989 Michael De Vlieger, <a href="/A299989/b299989.txt">Table of n, a(n) for n = 0..10301</a> (rows 0 <= n <= 100, flattened.) %H A299989 Ryo Hanaki, <a href="https://projecteuclid.org/euclid.ojm/1285334478">Pseudo diagrams of knots, links and spatial graphs</a>, Osaka Journal of Mathematics, Vol. 47 (2010), 863-883. %H A299989 Louis H. Kauffman, <a href="https://doi.org/10.1016/0040-9383(87)90009-7">State models and the Jones polynomial</a>, Topology, Vol. 26 (1987), 395-407. %H A299989 Carolina Medina, Jorge Ramírez-Alfonsín and Gelasio Salazar, <a href="https://arxiv.org/abs/1710.06470">On the number of unknot diagrams</a>, arXiv:1710.06470 [math.CO], 2017. %H A299989 Franck Ramaharo, <a href="https://arxiv.org/abs/1802.07701">Statistics on some classes of knot shadows</a>, arXiv:1802.07701 [math.CO], 2018. %H A299989 Franck Ramaharo, <a href="https://arxiv.org/abs/1805.10569">A generating polynomial for the pretzel knot</a>, arXiv:1805.10680 [math.CO], 2018. %H A299989 Franck Ramaharo, <a href="https://arxiv.org/abs/2002.06672">A bracket polynomial for 2-tangle shadows</a>, arXiv:2002.06672 [math.CO], 2020. %F A299989 T(n,k) = coefficients of x*(x^2 + 4*x + 3)^n. %F A299989 T(n,k) = T(n-1,k-2) + 4*T(n-1,k-1) + 3*T(n-1,k), with T(n,0) = 0, T(n,1) = 3^n and T(n,2) = 4*n*3^(n-1). %F A299989 T(n,n+k+1) = A152842(2*n,n+k) and T(n,n-k) = A152842(2*n,n+k+1), for n >= k >= 0. %F A299989 T(n,1) = A000244(n). %F A299989 T(n,2) = A120908(n). %F A299989 T(n,n+1) = A069835(n). %F A299989 T(n,2*n-1) = A139272(n). %F A299989 T(n,2*n) = A008586(n). %F A299989 T(n,2*n-2) = A140138(4*n) = A185872(2n,2) for n >= 1. %F A299989 G.f.: x/(1 - y*(x^2 + 4*x + 3)). %e A299989 The triangle T(n, k) begins: %e A299989 n\k 0 1 2 3 4 5 6 7 8 9 %e A299989 0: 0 1 %e A299989 1: 0 3 4 1 %e A299989 2: 0 9 24 22 8 1 %e A299989 3: 0 27 108 171 136 57 12 1 %e A299989 4: 0 81 432 972 1200 886 400 108 16 1 %t A299989 row[n_] := CoefficientList[x*(x^2 + 4*x + 3)^n, x]; Array[row, 7, 0] // Flatten (* _Jean-François Alcover_, Mar 16 2018 *) %o A299989 (Maxima) %o A299989 g(x, y) := taylor(x/(1 - y*(x^2 + 4*x + 3)), y, 0, 10)$ %o A299989 a : makelist(ratcoef(g(x, y), y, n), n, 0, 10)$ %o A299989 T : []$ %o A299989 for i:1 thru 11 do %o A299989 T : append(T, makelist(ratcoef(a[i], x, n), n, 0, 2*i - 1))$ %o A299989 T; %o A299989 (PARI) T(n, k) = polcoeff(x*(x^2 + 4*x + 3)^n, k); %o A299989 tabf(nn) = for (n=0, nn, for (k=0, 2*n+1, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Mar 03 2018 %Y A299989 Row 2: row 5 of A158454. %Y A299989 Row 3: row 2 of A220665. %Y A299989 Row 4: row 5 of A219234. %K A299989 tabf,easy,nonn %O A299989 0,4 %A A299989 _Franck Maminirina Ramaharo_, Feb 26 2018 %E A299989 Typo in row 6 corrected by _Jean-François Alcover_, Mar 16 2018