A300000 The sum of the first n terms of the sequence is the concatenation of the first n digits of the sequence, with a(1) = 1.
1, 10, 99, 999, 9990, 99900, 999000, 9990000, 99900000, 999000000, 9990000000, 99899999991, 998999999919, 9989999999190, 99899999991900, 998999999918991, 9989999999189910, 99899999991899109, 998999999918991090, 9989999999189910900, 99899999991899108991, 998999999918991089910, 9989999999189910899100
Offset: 1
Examples
1 + 10 = 11 which is the concatenation of 1 and 1. 1 + 10 + 99 = 110 which is the concatenation of 1, 1 and 0. 1 + 10 + 99 + 999 = 1109 which is the concatenation of 1, 1, 0 and 9. Otherwise said: a(3) = concat(1,1,0) - (1 + 10) = 110 - 11 = 99, a(4) = concat(1,1,0,9) - (11 + 99) = 1109 - 110 = 999, a(5) = concat(1,1,0,9,9) - 1109 = 11099 - 1109 = 9990, a(6) = concat(1,1,0,9,9,9) - 11099 = 99900, etc. - _M. F. Hasler_, Feb 22 2018
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..1001 (terms 1..300 from Jean-Marc Falcoz)
Crossrefs
Programs
-
Mathematica
a[1]=1;a[2]=10;a[n_]:=a[n]=FromDigits[Flatten[IntegerDigits/@Table[a[k],{k,n-1}]][[;;n]]]-Total@Table[a[m],{m,n-1}]; Table[a[l],{l,30}] (* Giorgos Kalogeropoulos, May 20 2019 *)
-
PARI
a(n, show=1, a=1, c=a, d=[c])={for(n=2, n, show&&print1(a","); a=-c+c=c*10+d[1]; d=concat(d[^1],if(n>2,digits(a)))); a} \\ M. F. Hasler, Feb 22 2018
-
Python
def a(n): alist, c, ckm1 = [1, 10], "110", 11 for k in range(3, n+1): ck = 10*ckm1 + int(c[k-1]) ak, ckm1 = ck - ckm1, ck c += str(ak) alist.append(ak) return alist[n-1] print([a(n) for n in range(1, 24)]) # Michael S. Branicky, Dec 07 2020
Formula
a(n) = c(n) - c(n-1), where c(n) is the concatenation of the first n digits. c(n) ~ 1.1*10^(n-1), and a(n) ~ 0.999*10^(n-1). - M. F. Hasler, Feb 22 2018
Comments