This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300007 #11 Mar 09 2018 18:54:29 %S A300007 95,82,92,38,37,47,35,34,83,68,67,81,30,29,28,36,26,25,24,69,53,52,66, %T A300007 19,18,17,27,15,14,13,54,40,51,8,7,16,5,4,43,32,191,190,39,188,187, %U A300007 186,6,184,183,182,33,22,21,31,177,176,175,189,173,172,171,185,169,168 %N A300007 Index of the inverse/opposite of the n-th 2 X 2 sandpile A300006(n). An involution (self-inverse permutation) of the integers [1..192]. %C A300007 See A300006 for the definition of the sandpile addition of 2 X 2 matrices. %C A300007 A300006(116) = 2222 represents the neutral element e = [2,2;2,2], so a(116) = 116. %C A300007 A300006 forms a group for the sandpile addition, so for each A300006(n) there exists a unique m, given here as a(n), such that A300006(n) (+) A300006(m) = 2222 (where (+) means the sandpile addition). A300006(m) is also listed as A300008(n). %H A300007 M. F. Hasler, <a href="/A300007/b300007.txt">Table of n, a(n) for n = 1..192</a> %e A300007 a(1) = 95 because A300006(1) + A300006(95) = 0112 + 2110 = 2222 represents the unit element of the 2 X 2 sandpile group. %e A300007 a(2) = 82 because A300006(2) + A300006(82) = 0113 + 2003 = 2116 "topples" to 2222. %o A300007 (PARI) A300007(n)=for(m=1,#S2,spa(S2[n],S2[m])==[2,2;2,2]&&return(m)) \\ S2 and spa() being defined as in A300006. %Y A300007 Cf. A300006, A300008, A300009. %K A300007 nonn,fini,full %O A300007 1,1 %A A300007 _M. F. Hasler_, Mar 07 2018