cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300060 Number of domino tilings of the diagram of the integer partition with Heinz number n.

This page as a plain text file.
%I A300060 #21 May 28 2018 06:06:05
%S A300060 1,0,1,1,0,0,1,0,2,1,0,1,1,0,0,1,0,0,1,0,2,1,0,0,3,0,3,1,1,0,0,0,0,1,
%T A300060 0,2,1,0,2,1,0,0,1,0,0,1,0,1,5,0,0,1,1,0,3,0,2,0,0,0,1,1,3,1,0,0,0,0,
%U A300060 0,1,1,0,0,0,4,1,0,0,1,0,5,1,0,2,3,0,2,1,1,1,5,0,0,1,0,0,0,0,0,3,1,0,0,0,0,0
%N A300060 Number of domino tilings of the diagram of the integer partition with Heinz number n.
%C A300060 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A300060 Alois P. Heinz, <a href="/A300060/b300060.txt">Table of n, a(n) for n = 1..100000</a>
%H A300060 Wikipedia, <a href="https://en.wikipedia.org/wiki/Domino_tiling">Domino tiling</a>
%H A300060 Gus Wiseman, <a href="/A300060/a300060.png">The a(91) = 5 domino tilings of (6,4).</a>
%p A300060 h:= proc(l, f) option remember; local k; if min(l[])>0 then
%p A300060      `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
%p A300060     else for k from nops(l) while l[k]>0 by -1 do od;
%p A300060         `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
%p A300060         `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
%p A300060       fi
%p A300060     end:
%p A300060 g:= l-> `if`(add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))=0,
%p A300060         `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))), 0):
%p A300060 a:= n-> g(sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
%p A300060 seq(a(n), n=1..120);  # _Alois P. Heinz_, May 22 2018
%t A300060 h[l_, f_] := h[l, f] = Module[{k}, If[Min[l] > 0, If[Length[f] == 0, 1, h[Map[Function[x, x-1], l[[Range @ f[[1]]]]], ReplacePart[f, 1 -> Nothing]]], For[k = Length[l], l[[k]] > 0, k-- ]; If[Length[f] > 0 && f[[1]] >= k, h[ReplacePart[l, k -> 2], f], 0] + If[k > 1 && l[[k-1]] == 0, h[ReplacePart[l, {k -> 1, k - 1 -> 1}], f], 0]]];
%t A300060 g[l_] := If[Sum[If[OddQ @ l[[i]], (-1)^i, 0], {i, 1, Length[l]}] == 0, If[l == {}, 1, h[Table[0, l[[1]]], ReplacePart[l, 1 -> Nothing]]], 0];
%t A300060 a[n_] := g[Reverse @ Sort[ Flatten[ Map[ Function[i, Table[PrimePi[i[[1]]], i[[2]]]], FactorInteger[n]]]]];
%t A300060 Array[a, 120] (* _Jean-François Alcover_, May 28 2018, after _Alois P. Heinz_ *)
%Y A300060 Cf. A000085, A000720, A000712, A000898, A001222, A004003, A056239, A099390, A138178, A153452, A238690, A296150, A296188, A299925, A299926, A300056, A300061, A304662.
%K A300060 nonn
%O A300060 1,9
%A A300060 _Gus Wiseman_, Feb 23 2018