This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300074 #39 Nov 23 2024 04:30:43 %S A300074 8,5,0,6,5,0,8,0,8,3,5,2,0,3,9,9,3,2,1,8,1,5,4,0,4,9,7,0,6,3,0,1,1,0, %T A300074 7,2,2,4,0,4,0,1,4,0,3,7,6,4,8,1,6,8,8,1,8,3,6,7,4,0,2,4,2,3,7,7,8,8, %U A300074 4,0,4,7,3,6,3,9,5,8,9,6,6,6,9,4,3,2,0,3,6,4,2,7,8,5,1,7,6 %N A300074 Decimal expansion of 1/(2*sin(Pi/5)) = A121570/2. %C A300074 This is the reciprocal of A182007, and one half of A121570. %C A300074 This is the ratio of the radius r of the circumscribing circle of a regular pentagon and its side length s: r/s = 1/(2*sin(Pi/5)). %C A300074 A quartic number of denominator 5 and minimal polynomial 5x^4 - 5x^2 + 1. - _Charles R Greathouse IV_, Mar 04 2018 %C A300074 Appears at Schur decomposition of A=[1 2; 2 3]. - _Donghwi Park_, Jun 20 2018 %H A300074 Muniru A Asiru, <a href="/A300074/b300074.txt">Table of n, a(n) for n = 0..2000</a> %H A300074 Wikipedia, <a href="https://en.wikipedia.org/wiki/Schur_decomposition">Schur decomposition</a>. %H A300074 <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>. %F A300074 r/s = 1/A182007 = A121570/2 = (2*phi - 1)*sqrt(2 + phi)/5, with the golden ratio phi = (1 + sqrt(5))/2 = A001622. %F A300074 From _Amiram Eldar_, Feb 08 2022: (Start) %F A300074 Equals cos(arccot(phi)) = cos(arctan(1/phi)) = cos(A195693). %F A300074 Equals sin(arctan(phi)) = sin(arccot(1/phi)) = sin(A195723). (End) %F A300074 Equals Product_{k>=1} (1 + (-1)^k/A090773(k)). - _Amiram Eldar_, Nov 23 2024 %e A300074 r/s = 0.850650808352039932181540497063011072240401403764816881836740242377... %e A300074 2*r/s = A121570. %t A300074 RealDigits[1/(2 Sin[Pi/5]), 10, 111][[1]] (* _Robert G. Wilson v_, Jul 15 2018 *) %o A300074 (PARI) 1/(2*sin(Pi/5)) \\ _Charles R Greathouse IV_, Mar 04 2018 %o A300074 (PARI) sqrt((5+sqrt(5))/10) \\ _Charles R Greathouse IV_, Mar 04 2018 %Y A300074 Cf. A001622, A090773, A121570, A182007, A195693, A195723. %K A300074 nonn,cons,easy %O A300074 0,1 %A A300074 _Wolfdieter Lang_, Mar 01 2018