A300078 Number of steps of iterating 0 under z^2 + c before escaping, i.e., abs(z^2 + c) > 2, with c = -5/4 - epsilon^2 + epsilon*i, where epsilon = 10^(-n) and i^2 = -1.
1, 18, 159, 1586, 15731, 157085, 1570800, 15707976
Offset: 0
Links
- Gerald Edgar, Pi and the Mandelbrot set. (The Ohio State University.)
- Boris Gourévitch, Pi and fractal sets. The Mandelbrot set -- Dave Boll -- Gerald Edgar. (The World of Pi.)
- Aaron Klebanoff, Pi in the Mandelbrot Set. In: Fractals 9 (2001), nr. 4, p. 393-402.
Programs
-
Maple
Digits:=2^8: f:=proc(z, c, k) option remember; f(z, c, k-1)^2+c; end; a:=proc(n) local epsilon, c, k; epsilon:=10.^(-n): c:=-1.25-epsilon^2+epsilon*I: f(0, c, 0):=0: for k do if abs(f(0, c, k))>2 then break; fi; od: return(k); end; seq(a(n), n=0..7);
-
Python
from fractions import Fraction def A300078(n): zr, zc, c = Fraction(0,1), Fraction(0,1), 0 cr, cc = Fraction(-5,4)-Fraction(1,10**(2*n)), Fraction(1,10**n) zr2, zc2 = zr**2, zc**2 while zr2 + zc2 <= 4: zr, zc = zr2 - zc2 + cr, 2*zr*zc + cc zr2, zc2 = zr**2, zc**2 c += 1 return c # Chai Wah Wu, Mar 03 2018
Comments