A300082 a(1) = 1, a(n) = the smallest integer > a(n-1) such that Sum_{k=1..n} a(k) written in binary contains binary n as a substring.
1, 3, 7, 8, 10, 15, 16, 20, 21, 37, 38, 40, 53, 65, 80, 82, 84, 96, 111, 129, 150, 172, 193, 201, 202, 203, 227, 228, 254, 258, 259, 289, 296, 316, 317, 327, 349, 371, 399, 425, 426, 432, 449, 453, 509, 513, 526, 548, 593, 594, 611, 642, 643, 644, 648, 649
Offset: 1
Examples
The first terms, alongside the binary representation of Sum_{k=1..n} a(k) with the binary representation of n in brackets, are: n a(n) bin(Sum_{k=1..n} a(k)) -- ---- ---------------------- 1 1 (1) 2 3 (10)0 3 7 10(11) 4 8 (100)11 5 10 11(101) 6 15 10(110)0 7 16 (111)100 8 20 10(1000)0 9 21 1(1001)01 10 37 1000(1010) 11 38 (1011)0000 12 40 110(1100)0 13 53 10000(1101) 14 65 10100(1110) 15 80 1100(1111)0 16 82 1111(10000)
Links
- Rémy Sigrist, Perl program for A300082
- Rémy Sigrist, Scatterplot of the first difference of the first 2^17 terms
Programs
-
Perl
See Links section.
Comments