A300084 Number of nX3 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
3, 4, 1, 4, 10, 6, 19, 41, 32, 106, 177, 204, 567, 854, 1301, 3067, 4579, 8193, 16931, 26544, 50620, 96460, 160794, 309917, 567494, 993732, 1895366, 3426279, 6187957, 11638394, 21056192, 38635839, 71892662, 130796451, 241549120, 446677807
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1. .0..1..1. .0..0..0. .0..1..1. .0..0..0. .0..0..1. .0..1..0 ..0..0..1. .0..1..1. .0..0..0. .0..1..1. .0..0..0. .0..0..1. .0..1..0 ..0..0..0. .0..0..0. .0..0..0. .1..1..1. .0..0..0. .0..0..0. .0..0..0 ..1..1..0. .1..0..0. .0..0..0. .0..1..1. .1..1..1. .0..0..1. .0..1..0 ..1..1..0. .1..0..0. .0..0..0. .0..1..1. .1..1..1. .0..0..1. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A300089.
Formula
Empirical: a(n) = 2*a(n-1) +a(n-2) +2*a(n-3) -10*a(n-4) +2*a(n-5) +2*a(n-6) +2*a(n-7) -3*a(n-8) -3*a(n-9) +12*a(n-10) -4*a(n-11) +17*a(n-12) -3*a(n-13) -5*a(n-14) +a(n-15) -12*a(n-16) -6*a(n-17) -2*a(n-18) -3*a(n-19) -a(n-20) for n>21
Comments