cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300085 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.

This page as a plain text file.
%I A300085 #6 Feb 25 2018 06:17:19
%S A300085 5,8,4,25,50,98,359,766,1932,5677,12860,34902,92923,224468,609898,
%T A300085 1569799,3969016,10617506,27213371,70541934,186417464,481204483,
%U A300085 1261639106,3316784004,8641317351,22770348996,59873020940,157234586213
%N A300085 Number of nX4 0..1 arrays with every element equal to 0, 1, 3, 5, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
%C A300085 Column 4 of A300089.
%H A300085 R. H. Hardin, <a href="/A300085/b300085.txt">Table of n, a(n) for n = 1..210</a>
%F A300085 Empirical: a(n) = 3*a(n-1) +a(n-2) +23*a(n-3) -77*a(n-4) +5*a(n-5) -303*a(n-6) +735*a(n-7) -169*a(n-8) +2494*a(n-9) -3571*a(n-10) +1775*a(n-11) -10599*a(n-12) +9687*a(n-13) -8801*a(n-14) +23592*a(n-15) -19900*a(n-16) +18698*a(n-17) -34363*a(n-18) +29869*a(n-19) -21710*a(n-20) +36339*a(n-21) -31007*a(n-22) +16036*a(n-23) -26673*a(n-24) +26280*a(n-25) -4804*a(n-26) +15200*a(n-27) -19964*a(n-28) -4002*a(n-29) -9745*a(n-30) +12193*a(n-31) +4104*a(n-32) +5170*a(n-33) -7137*a(n-34) -2131*a(n-35) -834*a(n-36) +4727*a(n-37) +2072*a(n-38) -544*a(n-39) -2800*a(n-40) -1833*a(n-41) +287*a(n-42) +1272*a(n-43) +1184*a(n-44) -38*a(n-45) -361*a(n-46) -569*a(n-47) -23*a(n-48) +69*a(n-49) +172*a(n-50) +27*a(n-51) -23*a(n-52) -34*a(n-53) -10*a(n-54) +5*a(n-55) +7*a(n-56) +a(n-57) -a(n-59) for n>61
%e A300085 Some solutions for n=5
%e A300085 ..0..1..0..0. .0..0..1..0. .0..1..0..1. .0..0..0..0. .0..0..0..0
%e A300085 ..0..1..0..0. .0..0..1..0. .1..0..0..0. .0..0..0..0. .0..0..0..0
%e A300085 ..0..0..0..0. .0..0..1..1. .0..0..0..1. .0..0..0..0. .0..0..0..0
%e A300085 ..0..1..0..0. .0..0..1..0. .0..1..0..0. .1..1..1..1. .0..0..0..0
%e A300085 ..0..1..0..0. .0..0..1..0. .1..0..0..1. .1..1..1..1. .0..0..0..0
%Y A300085 Cf. A300089.
%K A300085 nonn
%O A300085 1,1
%A A300085 _R. H. Hardin_, Feb 24 2018