cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300118 Number of skew partitions whose quotient diagram is connected and whose numerator is the integer partition with Heinz number n.

This page as a plain text file.
%I A300118 #8 May 24 2018 16:07:14
%S A300118 1,2,3,3,4,4,5,4,6,5,6,5,7,6,7,5,8,7,9,6,8,7,10,6,10,8,10,7,11,8,12,6,
%T A300118 9,9,11,8,13,10,10,7,14,9,15,8,11,11,16,7,15,11,11,9,17,11,12,8,12,12,
%U A300118 18,9,19,13,12,7,13,10,20,10,13,12,21,9,22,14,15,11
%N A300118 Number of skew partitions whose quotient diagram is connected and whose numerator is the integer partition with Heinz number n.
%C A300118 The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns.
%e A300118 The a(15) = 7 denominators are (), (1), (11), (22), (3), (31), (32) with diagrams:
%e A300118 o o o   . o o   . o o   . . o   . . .   . . .   o o o
%e A300118 o o     o o     . o     . .     o o     . o     o o
%e A300118 Missing are the two disconnected skew partitions:
%e A300118 . . o   . . o
%e A300118 o o     . o
%t A300118 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A300118 undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]<y[[i+1]],{i,Range[Min@@r,Max@@r-1]}]]]]];
%t A300118 Table[Length[undcon[Reverse[primeMS[n]]]],{n,100}]
%Y A300118 Cf. A000085, A000898, A056239, A006958, A138178, A153452, A238690, A259479, A259480, A296150, A297388, A299925, A299926, A300056, A300060, A300120, A300122, A300123, A300124.
%K A300118 nonn
%O A300118 1,2
%A A300118 _Gus Wiseman_, Feb 25 2018