This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300118 #8 May 24 2018 16:07:14 %S A300118 1,2,3,3,4,4,5,4,6,5,6,5,7,6,7,5,8,7,9,6,8,7,10,6,10,8,10,7,11,8,12,6, %T A300118 9,9,11,8,13,10,10,7,14,9,15,8,11,11,16,7,15,11,11,9,17,11,12,8,12,12, %U A300118 18,9,19,13,12,7,13,10,20,10,13,12,21,9,22,14,15,11 %N A300118 Number of skew partitions whose quotient diagram is connected and whose numerator is the integer partition with Heinz number n. %C A300118 The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. %e A300118 The a(15) = 7 denominators are (), (1), (11), (22), (3), (31), (32) with diagrams: %e A300118 o o o . o o . o o . . o . . . . . . o o o %e A300118 o o o o . o . . o o . o o o %e A300118 Missing are the two disconnected skew partitions: %e A300118 . . o . . o %e A300118 o o . o %t A300118 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A300118 undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]<y[[i+1]],{i,Range[Min@@r,Max@@r-1]}]]]]]; %t A300118 Table[Length[undcon[Reverse[primeMS[n]]]],{n,100}] %Y A300118 Cf. A000085, A000898, A056239, A006958, A138178, A153452, A238690, A259479, A259480, A296150, A297388, A299925, A299926, A300056, A300060, A300120, A300122, A300123, A300124. %K A300118 nonn %O A300118 1,2 %A A300118 _Gus Wiseman_, Feb 25 2018