cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300120 Number of skew partitions whose quotient diagram is connected and whose numerator has weight n.

This page as a plain text file.
%I A300120 #7 May 24 2018 16:04:30
%S A300120 2,6,12,26,44,86,136,239,376,613,930,1485,2194,3355,4948,7372,10656,
%T A300120 15660,22359,32308
%N A300120 Number of skew partitions whose quotient diagram is connected and whose numerator has weight n.
%C A300120 The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns.
%e A300120 The a(3) = 12 skew partitions:
%e A300120 (3)/()   (3)/(1)   (3)/(2)    (3)/(3)
%e A300120 (21)/()  (21)/(11) (21)/(2)   (21)/(21)
%e A300120 (111)/() (111)/(1) (111)/(11) (111)/(111)
%t A300120 undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]<y[[i+1]],{i,Range[Min@@r,Max@@r-1]}]]]]];
%t A300120 Table[Total[Length/@undcon/@IntegerPartitions[n]],{n,10}]
%Y A300120 Cf. A000085, A000898, A006958, A138178, A238690, A259479, A259480, A297388, A299925, A299926, A300118, A300122, A300123, A300124.
%K A300120 nonn,more
%O A300120 1,1
%A A300120 _Gus Wiseman_, Feb 25 2018