cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300123 Number of ways to tile the diagram of the integer partition with Heinz number n using connected skew partitions.

This page as a plain text file.
%I A300123 #9 May 24 2018 16:05:25
%S A300123 1,1,2,2,4,4,8,4,10,8,16,8,32,16,20,8,64,20,128,16,40,32,256,16,52,64,
%T A300123 52,32,512,40,1024,16,80,128,104,40,2048,256,160,32,4096,80,8192,64,
%U A300123 104,512,16384,32,272,104
%N A300123 Number of ways to tile the diagram of the integer partition with Heinz number n using connected skew partitions.
%C A300123 The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A300123 Solomon W. Golomb, <a href="https://doi.org/10.1016/S0021-9800(66)80033-9">Tiling with polyominoes</a>, Journal of Combinatorial Theory, 1-2 (1966), 280-296.
%H A300123 Gus Wiseman, <a href="/A300123/a300123.png">The a(25) = 52 connected tilings of (3,3).</a>
%Y A300123 Cf. A000085, A000898, A056239, A006958, A238690, A259479, A259480, A296150, A296561, A297388, A299699, A299925, A299926, A300060, A300118, A300120, A300121, A300122, A300124.
%K A300123 nonn
%O A300123 1,3
%A A300123 _Gus Wiseman_, Feb 25 2018