A300125 Number of closable Motzkin trees.
0, 1, 1, 2, 5, 11, 26, 65, 163, 417, 1086, 2858, 7599, 20391, 55127, 150028, 410719, 1130245, 3124770, 8675210, 24175809, 67603633, 189633981, 533463183, 1504644945, 4254179693, 12055097308, 34231674486, 97392368007, 277590288931, 792528581088
Offset: 0
Keywords
Links
- Olivier Bodini, Paul Tarau, On Uniquely Closable and Uniquely Typable Skeletons of Lambda Terms, arXiv:1709.04302 [cs.PL], 2017.
Programs
-
Maple
f:= gfun:-rectoproc({ (384*n^2 +384*n) *a(n ) + (-32*n^2-512*n-480) *a(n+1) + (-368*n^2 -2192*n-2928) *a(n+2) + (-56*n^2 -344*n-504) *a(n+3) + (-4*n^2 +188*n+852) *a(n+4) + (110*n^2 +1034*n+2328) *a(n+5) + (-21*n^2 -201*n-390) *a(n+6) + (-21*n^2 -327*n-1272) *a(n+7) + (9*n^2 +153*n+648) *a(n+8) + (-n^2 -19*n-90) *a(n+9) = 0, a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 5, a(6) = 11, a(7) = 26, a(8) = 65 }, a(n), remember): map(f, [$1..64]); # Georg Fischer, Mar 29 2020 (from the Bodini-Tarau paper)
Extensions
More terms from Georg Fischer, Mar 29 2020
Comments