cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300153 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the number of parts inscribed in a rose or rhodonea curve with polar coordinates r = cos(t * (k/n)).

This page as a plain text file.
%I A300153 #20 Feb 16 2025 08:33:53
%S A300153 1,4,4,2,1,3,8,12,12,8,3,4,1,4,5,12,20,24,24,20,12,4,2,9,1,10,3,7,16,
%T A300153 28,4,40,40,4,28,16,5,8,12,12,1,12,14,8,9,20,36,48,56,60,60,56,48,36,
%U A300153 20,6,3,2,4,20,1,21,4,3,5,11,24,44,60,72,80,84,84,80
%N A300153 Square array T(n, k) read by antidiagonals upwards, n > 0 and k > 0: T(n, k) is the number of parts inscribed in a rose or rhodonea curve with polar coordinates r = cos(t * (k/n)).
%C A300153 For any real p > 0, the rose or rhodonea curve with polar coordinates r = cos(t * p):
%C A300153 - is dense in the unit disk when p is irrational,
%C A300153 - is closed when p is rational, say p = u/v in reduced form; in that case, the number of parts inscribed in the curve is T(v, u),
%C A300153 - see also the illustration in Links section.
%H A300153 Rémy Sigrist, <a href="/A300153/a300153.png">Illustration of the first terms</a>
%H A300153 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rose.html">Rose</a>
%H A300153 Wikipedia, <a href="https://en.wikipedia.org/wiki/Rose_(mathematics)">Rose (mathematics)</a>
%F A300153 T(1, k) = A022998(k).
%F A300153 T(n, k) = T(n/gcd(n, k), k/gcd(n, k)).
%F A300153 Empirically, when gcd(n, k) = 1, we have the following formulas depending on the parity of n and of k:
%F A300153              | k is odd                       | k is even
%F A300153    ----------+--------------------------------+--------------------
%F A300153    n is odd  | T(n, k) =     k * A029578(n+1) | T(n, k) = 2 * k * n
%F A300153    n is even | T(n, k) = 2 * k * A029578(n+1) | N/A
%e A300153 Array T(n, k) begins:
%e A300153   n\k|    1    2    3    4    5    6    7    8    9
%e A300153   ---+---------------------------------------------
%e A300153     1|    1    4    3    8    5   12    7   16    9
%e A300153     2|    4    1   12    4   20    3   28    8   36
%e A300153     3|    2   12    1   24   10    4   14   48    3
%e A300153     4|    8    4   24    1   40   12   56    4   72
%e A300153     5|    3   20    9   40    1   60   21   80   27
%e A300153     6|   12    2    4   12   60    1   84   24   12
%e A300153     7|    4   28   12   56   20   84    1  112   36
%e A300153     8|   16    8   48    4   80   24  112    1  144
%e A300153     9|    5   36    2   72   25   12   35  144    1
%e A300153    10|   20    3   60   20    4    9  140   40  180
%e A300153    11|    6   44   18   88   30  132   42  176   54
%e A300153 ...
%e A300153 The following diagram shows the curve for T(2, 1) and the corresponding 4 parts:
%e A300153                          |
%e A300153                ########     ########
%e A300153            #####      #######      #####
%e A300153         ###          ###   ###          ###
%e A300153       ###           ##   |   ##           ###
%e A300153      ##            ##         ##            ##
%e A300153     ##             #  Part #2  #             ##
%e A300153    ##              ##         ##              ##
%e A300153    #                ###  |  ###                #
%e A300153   -#- - - Part #3  - -#######- -  Part #1 - - -#-
%e A300153    #                ###  |  ###                #
%e A300153    ##              ##         ##              ##
%e A300153     ##             #  Part #4  #             ##
%e A300153      ##            ##         ##            ##
%e A300153       ###           ##   |   ##           ###
%e A300153         ###          ###   ###          ###
%e A300153            #####      #######      #####
%e A300153                ########     ########
%e A300153                          |
%Y A300153 Cf. A022998, A029578.
%K A300153 nonn,tabl
%O A300153 1,2
%A A300153 _Rémy Sigrist_, Feb 26 2018