A300158 Absolute value of product of nonzero eigenvalues of upper left (n+1)X(n+1) rank 2 submatrix of Wythoff array.
1, 1, 4, 8, 20, 38, 77, 143, 267, 474, 856, 1540, 2703, 4749, 8204, 14233, 24714, 42234, 72495, 122930, 209534, 357733, 603816, 1023096, 1735667, 2915260, 4913350, 8216036, 13794118, 23198608, 38710749, 64802028, 108623872, 180780234, 301734372, 500717764, 833682438, 1390233453, 2304627170
Offset: 1
Keywords
Examples
a(1) = 1 = |(4 + sqrt(17))*(4 - sqrt(17))|; a(2) = 1 = |(12 + sqrt(145))*(1/(-12 - sqrt(145)))|; a(3) = 4 = (1/2)*(63 + sqrt(3985))*(8/(-63 - sqrt(3985))).
Links
- Wikipedia, Wythoff array
Crossrefs
Cf. A035513.
Programs
-
Mathematica
\[Phi] = (1 + Sqrt[5])/2; A[m_, 1] := Floor[Floor[m*\[Phi]]*\[Phi]] A[m_, 2] := Floor[Floor[m*\[Phi]]*\[Phi]^2] A[m_, n_] := A[m, n] = A[m, n - 1] + A[m, n - 2] M[n_] := Table[A[i, j], {i, 1, n}, {j, 1, n}] X = Table[{n, -Simplify[Eigenvalues[M[n]][[1 ;; 2]][[1]]*Eigenvalues[M[n]][[1 ;; 2]][[2]]]}, {n, 2, 40}]
Comments