cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300158 Absolute value of product of nonzero eigenvalues of upper left (n+1)X(n+1) rank 2 submatrix of Wythoff array.

Original entry on oeis.org

1, 1, 4, 8, 20, 38, 77, 143, 267, 474, 856, 1540, 2703, 4749, 8204, 14233, 24714, 42234, 72495, 122930, 209534, 357733, 603816, 1023096, 1735667, 2915260, 4913350, 8216036, 13794118, 23198608, 38710749, 64802028, 108623872, 180780234, 301734372, 500717764, 833682438, 1390233453, 2304627170
Offset: 1

Views

Author

Gary E. Davis, Feb 26 2018

Keywords

Comments

Empirical observation via computation.

Examples

			a(1) = 1 = |(4 + sqrt(17))*(4 - sqrt(17))|;
a(2) = 1 = |(12 + sqrt(145))*(1/(-12 - sqrt(145)))|;
a(3) = 4 = (1/2)*(63 + sqrt(3985))*(8/(-63 - sqrt(3985))).
		

Crossrefs

Cf. A035513.

Programs

  • Mathematica
    \[Phi] = (1 + Sqrt[5])/2;
    A[m_, 1] := Floor[Floor[m*\[Phi]]*\[Phi]]
    A[m_, 2] := Floor[Floor[m*\[Phi]]*\[Phi]^2]
    A[m_, n_] := A[m, n] = A[m, n - 1] + A[m, n - 2]
    M[n_] := Table[A[i, j], {i, 1, n}, {j, 1, n}]
    X = Table[{n, -Simplify[Eigenvalues[M[n]][[1 ;; 2]][[1]]*Eigenvalues[M[n]][[1 ;; 2]][[2]]]}, {n, 2, 40}]