A300178 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
8, 128, 2033, 32321, 513832, 8168705, 129863167, 2064518282, 32820974441, 521776133213, 8295010668576, 131871117920269, 2096439948834819, 33328453784142714, 529843858517908445, 8423268484861943881
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..1. .0..0..0..1 ..0..1..1..1. .0..1..0..0. .0..0..1..1. .1..0..0..0. .0..1..1..1 ..1..0..1..1. .0..1..1..0. .0..0..0..1. .0..0..0..0. .0..1..0..0 ..1..0..1..1. .0..1..1..1. .1..0..1..0. .0..0..1..0. .0..0..0..0 ..1..1..0..1. .1..1..1..1. .1..1..1..0. .0..1..1..1. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A300182.
Formula
Empirical: a(n) = 14*a(n-1) +27*a(n-2) +51*a(n-3) -10*a(n-4) -a(n-5) -10*a(n-6)
Comments