A300180 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
32, 2048, 129217, 8168705, 516368256, 32640586945, 2063278351093, 130424025161538, 8244367994118153, 521143277869649643, 32942527085459429442, 2082364172855562710821, 131630476835565158890163
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0..1..0. .0..0..0..0..1..1. .0..0..0..1..1..0. .0..0..0..0..1..1 ..0..0..1..0..0..0. .0..0..0..0..1..1. .0..0..0..1..0..0. .0..0..1..0..1..1 ..0..0..0..1..0..1. .0..0..1..1..0..1. .0..0..1..0..1..0. .0..0..0..1..1..0 ..0..0..0..1..1..1. .0..0..0..1..1..1. .0..0..0..0..1..0. .0..0..0..1..0..1 ..0..0..1..0..0..0. .0..0..0..0..1..1. .0..0..0..0..1..1. .0..0..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A300182.
Formula
Empirical: a(n) = 52*a(n-1) +613*a(n-2) +5871*a(n-3) +11376*a(n-4) +9186*a(n-5) -411458*a(n-6) +66088*a(n-7) -1386895*a(n-8) +8059846*a(n-9) -4373944*a(n-10) +14457696*a(n-11) -42895616*a(n-12) +12292096*a(n-13) -11452416*a(n-14) +15335424*a(n-15)
Comments