This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300185 #41 Sep 25 2023 14:34:15 %S A300185 1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0,0,2,1,1,0, %T A300185 1,2,1,0,0,0,2,0,0,0,0,1,0,0,0,0,1,0,0,0,0,2,2,1,1,0,1,3,1,1,0,0,0,2, %U A300185 1,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,4,2,2,1,1,0,1,4,2,1,0,0,0,0,4,1,0,0,0,0,0,3,0 %N A300185 Irregular triangle read by rows: T(n, {j,k}) is the number of partitions of n that have exactly j parts equal to k; 1 <= j <= n, 1 <= k <= n. %C A300185 Row sums = A027293. %C A300185 If superfluous zeros are removed from the right side of each row, the row lengths = 1,2,1,3,1,1,4,2,... = A010766. %C A300185 Sum of each N X N block of rows = 1,2,4,7,12,19,... = A000070. %C A300185 The sum of the partitions of n that are over-counted in each block of N x N rows = A000070(n) - A000041(n) = A058884(n), n >= 1. %C A300185 Concatenation of first row from each N X N block = A116598. %C A300185 As noted by _Joerg Arndt_ in A116598, the first row from each N X N block in reverse converges to A002865. Two sequences emerge from alternating second rows in reverse: for 2n, converges to even-indexed terms in A027336, and for 2n+1, converges to odd-indexed terms in A027336. %C A300185 Counting the rows in each N X N block where columns j=2 > 0 and j=3 through j=n are all zeros produces A008615(n), n > 0. %H A300185 J. Stauduhar, <a href="/A300185/b300185.txt">Table of n, a(n) for n = 1..10000</a> %H A300185 Jerome Kelleher and Barry O'Sullivan, <a href="http://arxiv.org/abs/0909.2331">Generating All Partitions: A Comparison Of Two Encodings</a>, arXiv:0909.2331 [cs.DS], 2009-2014. %H A300185 J. Stauduhar, <a href="/A300185/a300185.py.txt">Original Python program.</a> %e A300185 \ j 1 2 3 4 5 %e A300185 k %e A300185 n %e A300185 1: 1 1 %e A300185 2: 1 0 1 %e A300185 2 1 0 %e A300185 3: 1 1 0 1 %e A300185 2 1 0 0 %e A300185 3 1 0 0 %e A300185 4: 1 1 1 0 1 %e A300185 2 1 1 0 0 %e A300185 3 1 0 0 0 %e A300185 4 1 0 0 0 %e A300185 5: 1 2 1 1 0 1 %e A300185 2 2 1 0 0 0 %e A300185 3 2 0 0 0 0 %e A300185 4 1 0 0 0 0 %e A300185 5 1 0 0 0 0 %e A300185 . %e A300185 . %e A300185 . %t A300185 Array[With[{s = IntegerPartitions[#]}, Table[Count[Map[Count[#, k] &, s], j], {k, #}, {j, #}]] &, 7] // Flatten (* _Michael De Vlieger_, Feb 28 2018 *) %o A300185 (Python) # See Stauduhar link. %Y A300185 Cf. A000041, A000070, A008615, A010766, A027293, A027336, A058884, A116598. %K A300185 nonn,tabf %O A300185 1,31 %A A300185 _J. Stauduhar_, Feb 27 2018