cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300187 a(n) = n! * [x^n] Product_{k>=1} (1 + x^k)^(n/k).

This page as a plain text file.
%I A300187 #10 Sep 07 2018 07:16:07
%S A300187 1,1,4,39,488,7615,147024,3371137,89079808,2665537713,89142430400,
%T A300187 3295096700071,133399600068096,5870116973678191,278971698167158528,
%U A300187 14239859507270510625,776985219329347518464,45130494178637796970273,2780224621391401396134912,181059775626543107582734183
%N A300187 a(n) = n! * [x^n] Product_{k>=1} (1 + x^k)^(n/k).
%H A300187 Vaclav Kotesovec, <a href="/A300187/b300187.txt">Table of n, a(n) for n = 0..300</a>
%F A300187 a(n) = n! * [x^n] exp(n*Sum_{k>=1} A048272(k)*x^k/k).
%F A300187 a(n) ~ c * d^n * n^n, where d = 1.294982800733109500251... and c = 0.6755467963500480915... - _Vaclav Kotesovec_, Sep 07 2018
%e A300187 The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} (1 + x^k)^(n/k) begins:
%e A300187 n = 0: (1), 0,   0,    0,     0,      0,       0,  ...
%e A300187 n = 1:  1, (1),  1,    5,    11,     59,     439,  ...
%e A300187 n = 2:  1,  2,  (4),  16,    68,    328,    2416,  ...
%e A300187 n = 3:  1,  3,   9,  (39),  207,   1197,    8811,  ...
%e A300187 n = 4:  1,  4,  16,   80,  (488),  3296,   25984,  ...
%e A300187 n = 5:  1,  5,  25,  145,   995,  (7615),  65575,  ...
%e A300187 n = 6:  1,  6,  36,  240,  1836,  15624, (147024), ...
%t A300187 Table[n! SeriesCoefficient[Product[(1 + x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
%Y A300187 Cf. A048272, A168243, A270922, A299033, A299034, A300188.
%K A300187 nonn
%O A300187 0,3
%A A300187 _Ilya Gutkovskiy_, Feb 28 2018