A300210 Number of n X 3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
4, 32, 228, 1651, 11965, 86775, 629440, 4566023, 33122989, 240283124, 1743081647, 12644813016, 91729105941, 665429316237, 4827215711786, 35018011778092, 254030734032018, 1842812043966813, 13368288852038965, 96977414177346279
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..1..0. .0..0..0. .0..1..1. .0..0..1. .0..0..1. .0..0..0. .0..0..1 ..0..1..0. .0..0..1. .0..0..0. .0..1..0. .0..1..1. .1..1..1. .0..0..1 ..1..0..1. .0..1..1. .0..1..1. .0..1..0. .0..1..0. .1..1..0. .0..0..1 ..1..1..0. .1..0..1. .0..1..0. .1..1..0. .1..0..1. .1..0..0. .0..0..1 ..0..0..1. .0..0..1. .1..1..1. .0..1..1. .1..0..0. .0..1..1. .0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A300215.
Formula
Empirical: a(n) = 8*a(n-1) -4*a(n-2) -8*a(n-3) -15*a(n-4) -4*a(n-5) -25*a(n-6) -44*a(n-7) -12*a(n-8).
Comments