A300211 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
8, 128, 1651, 22194, 298600, 4023881, 54246856, 731384148, 9861234001, 132960046732, 1792718900628, 24171499455083, 325908051174738, 4394268763240974, 59248607955630411, 798858184228775812
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..1..0. .0..0..1..0. .0..0..0..1. .0..0..0..1. .0..0..0..1 ..1..0..1..1. .1..0..0..1. .1..0..1..0. .0..1..0..0. .1..1..1..0 ..1..1..0..0. .1..0..1..0. .1..0..1..0. .0..1..1..0. .1..0..0..0 ..0..1..1..1. .0..1..0..1. .1..0..0..1. .0..1..0..0. .1..1..0..0 ..1..0..0..0. .1..1..0..0. .1..0..1..1. .0..0..0..0. .1..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A300215.
Formula
Empirical: a(n) = 15*a(n-1) -14*a(n-2) -59*a(n-3) -415*a(n-4) +440*a(n-5) +841*a(n-6) +857*a(n-7) -1520*a(n-8) +9609*a(n-9) +25294*a(n-10) -4843*a(n-11) -72412*a(n-12) -117953*a(n-13) -55535*a(n-14) +52555*a(n-15) +118040*a(n-16) +49470*a(n-17) -44450*a(n-18) -41445*a(n-19) -945*a(n-20) +4777*a(n-21) +1797*a(n-22) +1189*a(n-23) +156*a(n-24)
Comments