cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A300210 Number of n X 3 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

4, 32, 228, 1651, 11965, 86775, 629440, 4566023, 33122989, 240283124, 1743081647, 12644813016, 91729105941, 665429316237, 4827215711786, 35018011778092, 254030734032018, 1842812043966813, 13368288852038965, 96977414177346279
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2018

Keywords

Comments

Column 3 of A300215.

Examples

			Some solutions for n=5
..0..1..0. .0..0..0. .0..1..1. .0..0..1. .0..0..1. .0..0..0. .0..0..1
..0..1..0. .0..0..1. .0..0..0. .0..1..0. .0..1..1. .1..1..1. .0..0..1
..1..0..1. .0..1..1. .0..1..1. .0..1..0. .0..1..0. .1..1..0. .0..0..1
..1..1..0. .1..0..1. .0..1..0. .1..1..0. .1..0..1. .1..0..0. .0..0..1
..0..0..1. .0..0..1. .1..1..1. .0..1..1. .1..0..0. .0..1..1. .0..0..1
		

Crossrefs

Cf. A300215.

Formula

Empirical: a(n) = 8*a(n-1) -4*a(n-2) -8*a(n-3) -15*a(n-4) -4*a(n-5) -25*a(n-6) -44*a(n-7) -12*a(n-8).

A300211 Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

8, 128, 1651, 22194, 298600, 4023881, 54246856, 731384148, 9861234001, 132960046732, 1792718900628, 24171499455083, 325908051174738, 4394268763240974, 59248607955630411, 798858184228775812
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2018

Keywords

Comments

Column 4 of A300215.

Examples

			Some solutions for n=5
..0..0..1..0. .0..0..1..0. .0..0..0..1. .0..0..0..1. .0..0..0..1
..1..0..1..1. .1..0..0..1. .1..0..1..0. .0..1..0..0. .1..1..1..0
..1..1..0..0. .1..0..1..0. .1..0..1..0. .0..1..1..0. .1..0..0..0
..0..1..1..1. .0..1..0..1. .1..0..0..1. .0..1..0..0. .1..1..0..0
..1..0..0..0. .1..1..0..0. .1..0..1..1. .0..0..0..0. .1..1..0..1
		

Crossrefs

Cf. A300215.

Formula

Empirical: a(n) = 15*a(n-1) -14*a(n-2) -59*a(n-3) -415*a(n-4) +440*a(n-5) +841*a(n-6) +857*a(n-7) -1520*a(n-8) +9609*a(n-9) +25294*a(n-10) -4843*a(n-11) -72412*a(n-12) -117953*a(n-13) -55535*a(n-14) +52555*a(n-15) +118040*a(n-16) +49470*a(n-17) -44450*a(n-18) -41445*a(n-19) -945*a(n-20) +4777*a(n-21) +1797*a(n-22) +1189*a(n-23) +156*a(n-24)

A300212 Number of n X 5 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

16, 512, 11965, 298600, 7452385, 186427449, 4666136435, 116802113451, 2923892905217, 73194247560765, 1832287164688910, 45868072086086527, 1148226402670943944, 28743827399125599775, 719551149215186260057
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2018

Keywords

Comments

Column 5 of A300215.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..0..0..1..0. .0..0..1..0..0. .0..1..0..1..0. .0..1..0..1..1
..1..1..1..0..0. .1..1..0..1..1. .1..1..0..1..0. .0..1..0..1..0
..1..0..0..1..1. .1..1..0..1..1. .0..0..1..0..1. .1..1..0..0..1
..1..0..1..1..1. .1..0..0..0..0. .0..0..1..0..1. .0..1..0..0..1
		

Crossrefs

Cf. A300215.

Formula

Empirical recurrence of order 89 (see link above).

A300213 Number of nX6 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

32, 2048, 86775, 4023881, 186427449, 8664017314, 402932952786, 18741286700978, 871742323938453, 40549251015486612, 1886161222951010871, 87735473878569363763, 4081048501162756431234, 189831515389760442425217
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2018

Keywords

Comments

Column 6 of A300215.

Examples

			Some solutions for n=5
..0..0..0..1..0..0. .0..1..1..1..0..1. .0..1..1..0..0..1. .0..0..1..1..0..1
..0..0..1..1..0..1. .0..0..1..1..1..0. .0..0..1..0..0..0. .0..0..0..1..1..0
..0..0..0..1..0..0. .0..0..0..1..0..1. .0..0..0..1..1..1. .0..0..0..0..0..0
..0..0..0..1..0..0. .0..0..0..0..1..1. .0..0..0..1..0..1. .0..0..0..0..1..1
..0..0..1..1..0..0. .0..1..0..1..0..1. .0..1..0..1..0..0. .0..1..0..0..0..1
		

Crossrefs

Cf. A300215.

A300214 Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

64, 8192, 629440, 54246856, 4666136435, 402932952786, 34824178698922, 3010162276020151, 260210978826555172, 22494096787493774522, 1944522379136741443363, 168096182839942928684790
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2018

Keywords

Comments

Column 7 of A300215.

Examples

			Some solutions for n=5
..0..0..0..0..1..0..1. .0..0..0..1..0..0..0. .0..0..0..1..1..0..1
..0..0..0..0..0..1..1. .0..0..0..0..1..1..1. .0..0..0..0..1..1..1
..0..0..0..0..0..1..0. .0..0..0..0..1..1..0. .0..0..0..0..0..0..0
..0..0..0..1..0..1..0. .0..0..0..1..0..0..1. .0..0..0..1..1..1..1
..0..0..0..0..1..0..1. .0..0..0..0..0..1..1. .0..0..0..0..0..1..0
		

Crossrefs

Cf. A300215.

A300209 Number of n X n 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 8, 228, 22194, 7452385, 8664017314, 34824178698922, 483558835111191345, 23194796188589638077072
Offset: 1

Views

Author

R. H. Hardin, Feb 28 2018

Keywords

Comments

Diagonal of A300215.

Examples

			Some solutions for n=5
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0
..0..1..0..1..0. .0..1..0..1..1. .0..1..0..0..0. .0..0..0..0..1
..1..0..1..0..1. .0..1..0..0..0. .0..1..1..1..1. .0..0..1..0..1
..0..1..1..0..1. .0..1..0..1..0. .0..1..1..0..1. .0..0..0..1..1
..0..0..0..0..0. .1..1..1..1..0. .1..0..0..1..1. .0..1..1..1..0
		

Crossrefs

Cf. A300215.
Showing 1-6 of 6 results.