This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300218 #24 Mar 01 2018 20:23:28 %S A300218 1,2,2,4,4,12,10,36,30,104,94,344,316,1172,1096,4132,3856,14572,13798, %T A300218 52432,49940,190652,182362,699416,671092,2581112,2485534,9586984, %U A300218 9256396,35791472,34636834,134221860,130150588,505290272,490853416,1908874584,1857283156 %N A300218 Number of solutions to 1 +- 3 +- 5 +- ... +- (2*n-1) == 0 mod n. %H A300218 Alois P. Heinz, <a href="/A300218/b300218.txt">Table of n, a(n) for n = 1..1000</a> (first 200 terms from Seiichi Manyama) %e A300218 Solutions for n = 7: %e A300218 ---------------------------- %e A300218 1 +3 +5 +7 +9 +11 +13 = 49. %e A300218 1 +3 +5 -7 +9 +11 +13 = 35. %e A300218 1 +3 -5 +7 -9 +11 +13 = 21. %e A300218 1 +3 -5 -7 -9 +11 +13 = 7. %e A300218 1 -3 +5 +7 +9 -11 +13 = 21. %e A300218 1 -3 +5 -7 +9 -11 +13 = 7. %e A300218 1 -3 -5 +7 +9 +11 -13 = 7. %e A300218 1 -3 -5 +7 -9 -11 +13 = -7. %e A300218 1 -3 -5 -7 +9 +11 -13 = -7. %e A300218 1 -3 -5 -7 -9 -11 +13 = -21. %p A300218 b:= proc(n, i, m) option remember; `if`(i<1, `if`(n=0, 1, 0), %p A300218 add(b(irem(n+j, m), i-2, m), j=[i, m-i])) %p A300218 end: %p A300218 a:= n-> b(n-1, 2*n-3, n): %p A300218 seq(a(n), n=1..40); # _Alois P. Heinz_, Mar 01 2018 %t A300218 Table[With[{s = Range[1, (2 n - 1), 2]}, Count[Map[Total[s #] &, Take[Tuples[{-1, 1}, Length@ s], -2^(n - 1)]], _?(Divisible[#, n] &)]], {n, 22}] (* _Michael De Vlieger_, Mar 01 2018 *) %Y A300218 Cf. A063776, A156700, A300190. %K A300218 nonn %O A300218 1,2 %A A300218 _Seiichi Manyama_, Feb 28 2018