cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300229 Restricted growth sequence transform of A285729, combining A032742(n) and A046523(n), the largest proper divisor and the prime signature of n.

This page as a plain text file.
%I A300229 #9 Mar 01 2018 14:52:54
%S A300229 1,2,2,3,2,4,2,5,6,7,2,8,2,9,7,10,2,11,2,12,9,13,2,14,15,16,17,18,2,
%T A300229 19,2,20,13,21,9,22,2,23,16,24,2,25,2,26,27,28,2,29,30,31,21,32,2,33,
%U A300229 13,34,23,35,2,36,2,37,38,39,16,40,2,41,28,42,2,43,2,44,31,45,13,46,2,47,48,49,2,50,21,51,35,52,2,53,16,54,37,55,23,56,2,57
%N A300229 Restricted growth sequence transform of A285729, combining A032742(n) and A046523(n), the largest proper divisor and the prime signature of n.
%H A300229 Antti Karttunen, <a href="/A300229/b300229.txt">Table of n, a(n) for n = 1..65537</a>
%e A300229 a(10) = a(15) (= 7) because both are nonsquare semiprimes (2*5 and 3*5), and when the smallest prime factor is divided out, both yield the same quotient, 5.
%o A300229 (PARI)
%o A300229 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A300229 write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
%o A300229 A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
%o A300229 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
%o A300229 A285729(n) = (1/2)*(2 + ((A032742(n)+A046523(n))^2) - A032742(n) - 3*A046523(n));
%o A300229 write_to_bfile(1,rgs_transform(vector(65537,n,A285729(n))),"b300229.txt");
%Y A300229 Cf. A032742, A046523, A285729.
%Y A300229 Cf. also A300223, A300226, A300230, A300231, A300232, A300233, A300235.
%K A300229 nonn
%O A300229 1,2
%A A300229 _Antti Karttunen_, Mar 01 2018