cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300232 Restricted growth sequence transform of A286152, filter combining A051953(n) and A046523(n), cototient and the prime signature of n.

This page as a plain text file.
%I A300232 #10 Mar 01 2018 14:53:20
%S A300232 1,2,2,3,2,4,2,5,6,7,2,8,2,9,10,11,2,12,2,12,13,14,2,15,16,17,18,19,2,
%T A300232 20,2,21,22,23,24,25,2,26,27,28,2,29,2,30,31,32,2,33,34,35,36,37,2,38,
%U A300232 27,39,40,41,2,42,2,43,44,45,46,47,2,48,49,47,2,50,2,51,52,53,46,54,2,55,56,57,2,58,40,59,60,61,2,62,36,63,64,65,66,67,2,68,69
%N A300232 Restricted growth sequence transform of A286152, filter combining A051953(n) and A046523(n), cototient and the prime signature of n.
%H A300232 Antti Karttunen, <a href="/A300232/b300232.txt">Table of n, a(n) for n = 1..65537</a>
%e A300232 a(39) = a(55) (= 27) because both are nonsquare semiprimes (3*13 and 5*11), and both have cototient value 15 = 39 - phi(39) = 55 - phi(55).
%o A300232 (PARI)
%o A300232 up_to = 65537;
%o A300232 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A300232 write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
%o A300232 A051953(n) = (n - eulerphi(n));
%o A300232 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from _Charles R Greathouse IV_, Aug 17 2011
%o A300232 A286152(n) = (2 + ((A051953(n)+A046523(n))^2) - A051953(n) - 3*A046523(n))/2;
%o A300232 write_to_bfile(1,rgs_transform(vector(up_to,n,A286152(n))),"b300232.txt");
%Y A300232 Cf. A046523, A051953, A286152.
%Y A300232 Cf. also A295885, A300223, A300224, A300226, A300229, A300230, A300231, A300233, A300235.
%K A300232 nonn
%O A300232 1,2
%A A300232 _Antti Karttunen_, Mar 01 2018