cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300235 Restricted growth sequence transform of A291765, filter combining A001065(n) and A046523(n), the sum of proper divisors and the prime signature of n.

This page as a plain text file.
%I A300235 #7 Mar 01 2018 14:53:33
%S A300235 1,2,2,3,2,4,2,5,6,7,2,8,2,9,10,11,2,12,2,13,14,15,2,16,17,18,19,20,2,
%T A300235 21,2,22,23,24,25,26,2,27,28,29,2,30,2,31,32,33,2,34,35,36,37,38,2,39,
%U A300235 28,40,41,42,2,43,2,44,45,46,47,48,2,49,50,51,2,52,2,53,54,55,47,56,2,57,58,59,2,60,41,61,62,63,2,64,37,65,66,67,68,69,2,70,71
%N A300235 Restricted growth sequence transform of A291765, filter combining A001065(n) and A046523(n), the sum of proper divisors and the prime signature of n.
%H A300235 Antti Karttunen, <a href="/A300235/b300235.txt">Table of n, a(n) for n = 1..65537</a>
%e A300235 a(51) = a(91) (= 33) because both are nonsquare semiprimes (3*17 and 7*13), and the sum of their proper divisors (A001065) are equal 1+3+17 = 1+7+13 = 21.
%o A300235 (PARI)
%o A300235 up_to = 65537;
%o A300235 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A300235 write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
%o A300235 A001065(n) = (sigma(n)-n);
%o A300235 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from _Charles R Greathouse IV_, Aug 17 2011
%o A300235 A291765(n) = (1/2)*(2 + ((A001065(n)+A046523(n))^2) - A001065(n) - 3*A046523(n));
%o A300235 write_to_bfile(1,rgs_transform(vector(up_to,n,A291765(n))),"b300235.txt");
%Y A300235 Cf. A001065, A046523, A291765.
%Y A300235 Cf. also A295885, A300223, A300226, A300229, A300230, A300231, A300232, A300233.
%K A300235 nonn
%O A300235 1,2
%A A300235 _Antti Karttunen_, Mar 01 2018