cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300240 Filter sequence combining A009195(n) and A046523(n), i.e., gcd(n,phi(n)) and the prime signature of n.

This page as a plain text file.
%I A300240 #7 Mar 02 2018 22:45:20
%S A300240 1,2,2,3,2,4,2,5,6,4,2,7,2,4,8,9,2,10,2,7,11,4,2,12,13,4,14,7,2,15,2,
%T A300240 16,8,4,8,17,2,4,11,12,2,18,2,7,19,4,2,20,21,22,8,7,2,23,24,12,11,4,2,
%U A300240 25,2,4,26,27,8,15,2,7,8,15,2,28,2,4,29,7,8,18,2,20,30,4,2,31,8,4,8,12,2,32,8,7,11,4,8,33,2,34,19,35,2,15,2,12,36
%N A300240 Filter sequence combining A009195(n) and A046523(n), i.e., gcd(n,phi(n)) and the prime signature of n.
%C A300240 Restricted growth sequence transform of P(A009195(n), A046523(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.
%H A300240 Antti Karttunen, <a href="/A300240/b300240.txt">Table of n, a(n) for n = 1..65537</a>
%e A300240 a(6) = a(10) (= 4) because both 6 and 10 are nonsquare semiprimes, and A009195(6) = A009195(10) = 2.
%o A300240 (PARI)
%o A300240 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A300240 write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
%o A300240 A009195(n) = gcd(n, eulerphi(n));
%o A300240 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
%o A300240 Aux300240(n) = (1/2)*(2 + ((A046523(n)+A009195(n))^2) - A046523(n) - 3*A009195(n));
%o A300240 write_to_bfile(1,rgs_transform(vector(65537,n,Aux300240(n))),"b300240.txt");
%Y A300240 Cf. A009195, A046523.
%Y A300240 Cf. also A300230, A300241, A300242, A300243.
%K A300240 nonn
%O A300240 1,2
%A A300240 _Antti Karttunen_, Mar 02 2018