This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300240 #7 Mar 02 2018 22:45:20 %S A300240 1,2,2,3,2,4,2,5,6,4,2,7,2,4,8,9,2,10,2,7,11,4,2,12,13,4,14,7,2,15,2, %T A300240 16,8,4,8,17,2,4,11,12,2,18,2,7,19,4,2,20,21,22,8,7,2,23,24,12,11,4,2, %U A300240 25,2,4,26,27,8,15,2,7,8,15,2,28,2,4,29,7,8,18,2,20,30,4,2,31,8,4,8,12,2,32,8,7,11,4,8,33,2,34,19,35,2,15,2,12,36 %N A300240 Filter sequence combining A009195(n) and A046523(n), i.e., gcd(n,phi(n)) and the prime signature of n. %C A300240 Restricted growth sequence transform of P(A009195(n), A046523(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N. %H A300240 Antti Karttunen, <a href="/A300240/b300240.txt">Table of n, a(n) for n = 1..65537</a> %e A300240 a(6) = a(10) (= 4) because both 6 and 10 are nonsquare semiprimes, and A009195(6) = A009195(10) = 2. %o A300240 (PARI) %o A300240 rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; %o A300240 write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); } %o A300240 A009195(n) = gcd(n, eulerphi(n)); %o A300240 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 %o A300240 Aux300240(n) = (1/2)*(2 + ((A046523(n)+A009195(n))^2) - A046523(n) - 3*A009195(n)); %o A300240 write_to_bfile(1,rgs_transform(vector(65537,n,Aux300240(n))),"b300240.txt"); %Y A300240 Cf. A009195, A046523. %Y A300240 Cf. also A300230, A300241, A300242, A300243. %K A300240 nonn %O A300240 1,2 %A A300240 _Antti Karttunen_, Mar 02 2018