cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300268 Number of solutions to 1 +- 4 +- 9 +- ... +- n^2 == 0 (mod n).

This page as a plain text file.
%I A300268 #42 Mar 19 2022 06:37:01
%S A300268 1,0,2,4,6,0,10,48,32,0,94,344,370,0,1268,4608,3856,0,13798,55960,
%T A300268 50090,0,182362,721952,690496,0,2485592,9586984,9256746,0,34636834,
%U A300268 135335936,130150588,0,493452348,1908875264,1857293524,0,7049188508,27603824928
%N A300268 Number of solutions to 1 +- 4 +- 9 +- ... +- n^2 == 0 (mod n).
%H A300268 Seiichi Manyama, <a href="/A300268/b300268.txt">Table of n, a(n) for n = 1..3334</a> (terms 1..1000 from Alois P. Heinz)
%e A300268 Solutions for n = 7:
%e A300268 -------------------------------
%e A300268 1 +4 +9 +16 +25 +36 +49 =  140.
%e A300268 1 +4 +9 +16 +25 +36 -49 =   42.
%e A300268 1 +4 +9 -16 -25 -36 +49 =  -14.
%e A300268 1 +4 +9 -16 -25 -36 -49 = -112.
%e A300268 1 +4 -9 +16 -25 -36 +49 =    0.
%e A300268 1 +4 -9 +16 -25 -36 -49 =  -98.
%e A300268 1 -4 +9 -16 +25 -36 +49 =   28.
%e A300268 1 -4 +9 -16 +25 -36 -49 =  -70.
%e A300268 1 -4 -9 +16 +25 -36 +49 =   42.
%e A300268 1 -4 -9 +16 +25 -36 -49 =  -56.
%p A300268 b:= proc(n, i, m) option remember; `if`(i=0, `if`(n=0, 1, 0),
%p A300268       add(b(irem(n+j, m), i-1, m), j=[i^2, m-i^2]))
%p A300268     end:
%p A300268 a:= n-> b(0, n-1, n):
%p A300268 seq(a(n), n=1..60);  # _Alois P. Heinz_, Mar 01 2018
%t A300268 b[n_, i_, m_] := b[n, i, m] = If[i == 0, If[n == 0, 1, 0],
%t A300268      Sum[b[Mod[n + j, m], i - 1, m], {j, {i^2, m - i^2}}]];
%t A300268 a[n_] := b[0, n - 1, n];
%t A300268 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Mar 19 2022, after _Alois P. Heinz_ *)
%o A300268 (Ruby)
%o A300268 def A(n)
%o A300268   ary = [1] + Array.new(n - 1, 0)
%o A300268   (1..n).each{|i|
%o A300268     i2 = 2 * i * i
%o A300268     a = ary.clone
%o A300268     (0..n - 1).each{|j| a[(j + i2) % n] += ary[j]}
%o A300268     ary = a
%o A300268   }
%o A300268   ary[(n * (n + 1) * (2 * n + 1) / 6) % n] / 2
%o A300268 end
%o A300268 def A300268(n)
%o A300268   (1..n).map{|i| A(i)}
%o A300268 end
%o A300268 p A300268(100)
%o A300268 (PARI) a(n) = my (v=vector(n,k,k==1)); for (i=2, n, v = vector(n, k, v[1 + (k-i^2)%n] + v[1 + (k+i^2)%n])); v[1] \\ _Rémy Sigrist_, Mar 01 2018
%Y A300268 Number of solutions to 1 +- 2^k +- 3^k +- ... +- n^k == 0 (mod n): A300190 (k=1), this sequence (k=2), A300269 (k=3).
%Y A300268 Cf. A083527, A215573.
%K A300268 nonn
%O A300268 1,3
%A A300268 _Seiichi Manyama_, Mar 01 2018