This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300268 #42 Mar 19 2022 06:37:01 %S A300268 1,0,2,4,6,0,10,48,32,0,94,344,370,0,1268,4608,3856,0,13798,55960, %T A300268 50090,0,182362,721952,690496,0,2485592,9586984,9256746,0,34636834, %U A300268 135335936,130150588,0,493452348,1908875264,1857293524,0,7049188508,27603824928 %N A300268 Number of solutions to 1 +- 4 +- 9 +- ... +- n^2 == 0 (mod n). %H A300268 Seiichi Manyama, <a href="/A300268/b300268.txt">Table of n, a(n) for n = 1..3334</a> (terms 1..1000 from Alois P. Heinz) %e A300268 Solutions for n = 7: %e A300268 ------------------------------- %e A300268 1 +4 +9 +16 +25 +36 +49 = 140. %e A300268 1 +4 +9 +16 +25 +36 -49 = 42. %e A300268 1 +4 +9 -16 -25 -36 +49 = -14. %e A300268 1 +4 +9 -16 -25 -36 -49 = -112. %e A300268 1 +4 -9 +16 -25 -36 +49 = 0. %e A300268 1 +4 -9 +16 -25 -36 -49 = -98. %e A300268 1 -4 +9 -16 +25 -36 +49 = 28. %e A300268 1 -4 +9 -16 +25 -36 -49 = -70. %e A300268 1 -4 -9 +16 +25 -36 +49 = 42. %e A300268 1 -4 -9 +16 +25 -36 -49 = -56. %p A300268 b:= proc(n, i, m) option remember; `if`(i=0, `if`(n=0, 1, 0), %p A300268 add(b(irem(n+j, m), i-1, m), j=[i^2, m-i^2])) %p A300268 end: %p A300268 a:= n-> b(0, n-1, n): %p A300268 seq(a(n), n=1..60); # _Alois P. Heinz_, Mar 01 2018 %t A300268 b[n_, i_, m_] := b[n, i, m] = If[i == 0, If[n == 0, 1, 0], %t A300268 Sum[b[Mod[n + j, m], i - 1, m], {j, {i^2, m - i^2}}]]; %t A300268 a[n_] := b[0, n - 1, n]; %t A300268 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Mar 19 2022, after _Alois P. Heinz_ *) %o A300268 (Ruby) %o A300268 def A(n) %o A300268 ary = [1] + Array.new(n - 1, 0) %o A300268 (1..n).each{|i| %o A300268 i2 = 2 * i * i %o A300268 a = ary.clone %o A300268 (0..n - 1).each{|j| a[(j + i2) % n] += ary[j]} %o A300268 ary = a %o A300268 } %o A300268 ary[(n * (n + 1) * (2 * n + 1) / 6) % n] / 2 %o A300268 end %o A300268 def A300268(n) %o A300268 (1..n).map{|i| A(i)} %o A300268 end %o A300268 p A300268(100) %o A300268 (PARI) a(n) = my (v=vector(n,k,k==1)); for (i=2, n, v = vector(n, k, v[1 + (k-i^2)%n] + v[1 + (k+i^2)%n])); v[1] \\ _Rémy Sigrist_, Mar 01 2018 %Y A300268 Number of solutions to 1 +- 2^k +- 3^k +- ... +- n^k == 0 (mod n): A300190 (k=1), this sequence (k=2), A300269 (k=3). %Y A300268 Cf. A083527, A215573. %K A300268 nonn %O A300268 1,3 %A A300268 _Seiichi Manyama_, Mar 01 2018