This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300282 #7 Mar 07 2018 18:21:27 %S A300282 1,2,14,176,3256,80464,2508432,94989088,4253855744,220832422912, %T A300282 13086217711232,874394085363328,65223621800358400,5386555341558256640, %U A300282 489099399479737741824,48537534403454393734656,5237456183532299486332928,611754844797595116933365760,77043077295500803834985809920,10424760435433013614451330201600 %N A300282 E.g.f. A(x) satisfies: A'(x) = 1/(1 - A(A(x)))^2. %F A300282 E.g.f. A(x) satisfies: %F A300282 (1) A(x) = Series_Reversion( Integral (1 - A(x))^2 dx ). %F A300282 (2) A'(x) = 1 / (1 - A(A(x)))^2. %F A300282 (3) A''(x) = 2 / ( (1 - A(A(x)))^5 * (1 - A(A(A(x))))^2 ). %e A300282 G.f.: A(x) = x + 2*x^2/2! + 14*x^3/3! + 176*x^4/4! + 3256*x^5/5! + 80464*x^6/6! + 2508432*x^7/7! + 94989088*x^8/8! + 4253855744*x^9/9! + ... %e A300282 such that A'(x) = 1/(1 - A(A(x)))^2. %e A300282 RELATED SERIES. %e A300282 (1 - A(x))^2 = 1 - 2*x - 2*x^2/2! - 16*x^3/3! - 216*x^4/4! - 4192*x^5/5! - 107376*x^6/6! - 3444384*x^7/7! - 133557568*x^8/8! - 6103032256*x^9/9! + ... %e A300282 Series_Reversion(A(x)) = x - 2*x^2/2! - 2*x^3/3! - 16*x^4/4! - 216*x^5/5! - 4192*x^6/6! - 107376*x^7/7! + ... %e A300282 A(A(x)) = x + 4*x^2/2! + 40*x^3/3! + 656*x^4/4! + 15152*x^5/5! + 455280*x^6/6! + 16947776*x^7/7! + 756120640*x^8/8! + 39475100864*x^9/9! + ... %o A300282 (PARI) {a(n)=local(A=x, G); for(i=1, n, G = intformal( (1 - A +x*O(x^n))^2 ); A = serreverse(G)); n!*polcoeff(A, n)} %o A300282 for(n=1, 25, print1(a(n), ", ")) %o A300282 (PARI) {a(n) = local(A=x); for(i=1, n, A = serreverse(intformal( (1-A +x*O(x^n))^2 ))); n!*polcoeff(A, n)} %o A300282 for(n=1, 25, print1(a(n), ", ")) %Y A300282 Cf. A210949. %K A300282 nonn %O A300282 1,2 %A A300282 _Paul D. Hanna_, Mar 07 2018