This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300287 #13 Sep 08 2022 08:46:20 %S A300287 1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %T A300287 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5, %U A300287 5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 %N A300287 a(n) = floor((1/n) * Sum_{k=1..n} sqrt(k)). %H A300287 Mircea Merca, <a href="http://www.jstor.org/stable/10.4169/college.math.j.48.2.129">On the Arithmetic Mean of the Square Roots of the First n Positive Integers</a>, The College Mathematics Journal, Vol. 48, No. 2 (March 2017), pp. 129-133. %H A300287 S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram09.pdf">On the sum of the square roots of the first n natural numbers</a>, Journal of the Indian Mathematical Society, VIII (1915), pp. 173-175. %H A300287 Thomas P. Wihler, <a href="https://arxiv.org/abs/1803.00362">Rounding the arithmetic mean value of the square roots of the first n integers</a>, arXiv:1803.00362 [math.NT], 2018. %F A300287 a(n) = floor((2/3)*sqrt(n+1)*(1+1/(4*n))). See Theorem 1 of Wihler paper. %t A300287 Table[Floor[1/n Sum[Sqrt[k], {k, n}]], {n, 200}] (* _Vincenzo Librandi_, Mar 02 2018 *) %o A300287 (PARI) a(n) = floor(sum(k=1, n, sqrt(k))/n); %o A300287 (Magma) [Floor(&+[Sqrt(k)/n: k in [1..n]]): n in [1..100]]; // _Bruno Berselli_, Mar 02 2018 %Y A300287 Cf. A025224. %K A300287 nonn %O A300287 1,8 %A A300287 _Michel Marcus_, Mar 02 2018