This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300289 #26 Jun 20 2023 18:10:12 %S A300289 11,11,5,5,2,29,19,3,11,13,17,61,13,59,5,61,43,37,5,5,101,3,31,307,59, %T A300289 23,541,5,3,29,179,17,1721,257,17,5,239,229,199,149,3,13,3,1439,281, %U A300289 127,107,101,9791,163,31,107,3,3,139,199,83,13,929,83,19,11,11,107,71,181,167,661,1031 %N A300289 a(n) is the smallest prime p such that the product of p and prime(n) contains only prime digits, or -1 if no such prime p exists. %C A300289 If a(i) = prime(j), then a(j) <= prime(i). - _Rémy Sigrist_, Mar 03 2018. [Note that this does not imply that a prime p always exists! In fact if r and s are large primes, r*s will surely contain a nonprime digit, although this kind of question is beyond the reach of present-day mathematics. - _N. J. A. Sloane_, Mar 03 2018] %H A300289 Harvey P. Dale, <a href="/A300289/b300289.txt">Table of n, a(n) for n = 1..1000</a> %e A300289 11 is the smallest prime such that 11*prime(1)=22 consists of only prime digits. Therefore a(1) = 11. %t A300289 p[n_] := Module[{k = 1}, While[Union[PrimeQ /@ IntegerDigits[n*Prime[k]]] != {True}, k++]; Prime[k]]; p /@ Prime[Range[100]] %t A300289 spp[p_]:=Module[{k=2},While[AnyTrue[IntegerDigits[p*k],!PrimeQ[#]&],k=NextPrime[k]];k]; Table[spp[p],{p,Prime[Range[70]]}] (* _Harvey P. Dale_, Jun 20 2023 *) %o A300289 (PARI) a(n) = {forprime(p=2, , if (#select(x->(! isprime(x)), digits(p*prime(n))) == 0, return (p)););} \\ _Michel Marcus_, Mar 02 2018 %Y A300289 Cf. A046034. %K A300289 nonn,base %O A300289 1,1 %A A300289 _Ivan N. Ianakiev_, Mar 02 2018 %E A300289 Escape clause added to definition by _N. J. A. Sloane_, Mar 03 2018