This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300301 #8 Mar 05 2018 17:55:22 %S A300301 1,1,1,3,3,6,10,15,21,37,56,80,127,183,280,428,616,893,1367,1944,2846, %T A300301 4223,6049,8691,12670,18128,25921,37529,53338,75738,108561,153460, %U A300301 216762,308829,433893,612006,864990,1211097,1697020,2386016,3331037,4648229,6503314 %N A300301 Number of ways to choose a partition, with odd parts, of each part of a partition of n into odd parts. %H A300301 Alois P. Heinz, <a href="/A300301/b300301.txt">Table of n, a(n) for n = 0..5000</a> %F A300301 O.g.f.: Product_{n odd} 1/(1 - A000009(n)x^n). %e A300301 The a(6) = 10 twice-partitions using odd partitions: (5)(1), (3)(3), (113)(1), (3)(111), (111)(3), (3)(1)(1)(1), (11111)(1), (111)(111), (111)(1)(1)(1), (1)(1)(1)(1)(1)(1). %p A300301 with(numtheory): %p A300301 b:= proc(n) option remember; `if`(n=0, 1, add(add( %p A300301 `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n) %p A300301 end: %p A300301 g:= proc(n, i) option remember; `if`(n=0 or i=1, 1, %p A300301 g(n, i-2)+`if`(i>n, 0, b(i)*g(n-i, i))) %p A300301 end: %p A300301 a:= n-> g(n, n-1+irem(n,2)): %p A300301 seq(a(n), n=0..50); # _Alois P. Heinz_, Mar 05 2018 %t A300301 nn=50; %t A300301 ser=Product[1/(1-PartitionsQ[n]x^n),{n,1,nn,2}]; %t A300301 Table[SeriesCoefficient[ser,{x,0,n}],{n,0,nn}] %Y A300301 A300300(n) <= a(n) <= A279785(n) %Y A300301 Cf. A000009, A063834, A078408, A089259, A270995, A271619, A279374, A279375, A279790, A294617, A300300. %K A300301 nonn %O A300301 0,4 %A A300301 _Gus Wiseman_, Mar 02 2018