This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300323 #18 May 31 2018 10:09:14 %S A300323 1,1,2,3,6,12,28,69,186,522,1536,4638,14408,45568,146884,479871, %T A300323 1589516,5320854,18000198,61412376,211282386,731973720,2553168136, %U A300323 8957554412,31604599044,112060048354,399227283950,1428315878002,5130964125124,18499652813682 %N A300323 Number of Dyck paths of semilength n such that the area under the right half of the path equals the area under the left half of the path. %H A300323 Alois P. Heinz, <a href="/A300323/b300323.txt">Table of n, a(n) for n = 0..300</a> %H A300323 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A300323 a(n) >= A001405(n) with equality only for n <= 4. %F A300323 a(n) is odd <=> n in { A000225 }. %e A300323 /\ %e A300323 / \ /\/\ %e A300323 a(3) = 3: / \ / \ /\/\/\ . %e A300323 . %e A300323 a(5) = 12 counts A001405(5) = 10 symmetric plus 2 non-symmetric Dyck paths: %e A300323 /\ /\ %e A300323 /\/ \/ \ and its reversal. %p A300323 b:= proc(x, y) option remember; expand(`if`(x=0, 1, %p A300323 `if`(y<1, 0, b(x-1, y-1)*z^(2*y-1))+ %p A300323 `if`(x<y+2, 0, b(x-1, y+1)*z^(2*y+1)))) %p A300323 end: %p A300323 a:= proc(n) option remember; add((p-> add(coeff(p, z, i)^2 %p A300323 , i=0..degree(p)))(b(n, n-2*j)), j=0..n/2) %p A300323 end: %p A300323 seq(a(n), n=0..32); %t A300323 b[x_, y_] := b[x, y] = Expand[If[x == 0, 1, If[y < 1, 0, b[x - 1, y - 1] z^(2y - 1)] + If[x < y + 2, 0, b[x - 1, y + 1] z^(2y + 1)]]]; %t A300323 a[n_] := a[n] = Sum[Function[p, Sum[Coefficient[p, z, i]^2, {i, 0, Exponent[p, z]}]][b[n, n - 2j]], {j, 0, n/2}]; %t A300323 Table[a[n], {n, 0, 32}] (* _Jean-François Alcover_, May 31 2018, from Maple *) %Y A300323 Column k=0 of A300322. %Y A300323 Cf. A000108 (all Dyck paths), A000225, A001405 (symmetric Dyck paths), A129182, A239927, A298645. %K A300323 nonn %O A300323 0,3 %A A300323 _Alois P. Heinz_, Mar 02 2018