cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300327 Poulet numbers (Fermat pseudoprimes to base 2) with a record number of divisors that are also Poulet numbers.

This page as a plain text file.
%I A300327 #19 Mar 06 2023 07:21:21
%S A300327 341,13981,126217,294409,2113665,4670029,127479097,140996401,
%T A300327 509033161,8600780461,42625846021,220411358713,2382784226641,
%U A300327 11361630988981,56308742593741,431283945022021,434124350060401,2056455209005561,5598600634063801,8178192276975721
%N A300327 Poulet numbers (Fermat pseudoprimes to base 2) with a record number of divisors that are also Poulet numbers.
%C A300327 The number of divisors is 1, 2, 3, 4, 5, 6, 7, 8, 13, 15, 16, 20, 23, ...
%H A300327 Daniel Suteu, <a href="/A300327/b300327.txt">Table of n, a(n) for n = 1..25</a>
%H A300327 Jan Feitsma and William F. Galway, <a href="http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html">Tables of pseudoprimes and related data</a>.
%H A300327 R. G. E. Pinch, <a href="http://s369624816.websitehome.co.uk/rgep/psp-13.gz">Pseudoprimes up to 10^13</a>.
%e A300327 294409 is in the sequence since it is a Poulet number, and 4 of its divisors are also Poulet numbers (2701, 4033, 7957, 294409), more than for any smaller Poulet number.
%o A300327 (PARI) isP(n) = {Mod(2, n)^n==2 & !isprime(n) & n>1};
%o A300327 lista(nn) = {rec = 0; for (n=1, nn, if (isP(n), nb = sumdiv(n, d, isP(d)); if (nb > rec, print1(n, ", "); rec = nb);););} \\ _Michel Marcus_, Mar 07 2018
%Y A300327 Cf. A001567, A290497.
%K A300327 nonn
%O A300327 1,1
%A A300327 _Amiram Eldar_, Mar 03 2018
%E A300327 a(14)-a(20) from _Daniel Suteu_, Mar 06 2023