A300332 Integers of the form Sum_{j in 0:p-1} x^j*y^(p-j-1) where x and y are positive integers with max(x, y) >= 2 and p is some prime.
3, 4, 7, 12, 13, 19, 21, 27, 28, 31, 37, 39, 43, 48, 49, 52, 57, 61, 63, 67, 73, 75, 76, 79, 80, 84, 91, 93, 97, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199
Offset: 1
Keywords
Examples
Let p denote an odd prime. Subsequences are numbers of the form 2^p - 1, (A001348) (x = 1, y = 2) (Mersenne numbers), p*2^(p - 1), (A299795) (x = 2, y = 2), (3^p - 1)/2, (A003462) (x = 1, y = 3), 3^p - 2^p, (A135171) (x = 2, y = 3), p*3^(p - 1), (A027471) (x = 3, y = 3), (4^p - 1)/3, (A002450) (x = 1, y = 4), 2^(p-1)*(2^p-1), (A006516) (x = 2, y = 4), 4^p - 3^p, (A005061) (x = 3, y = 4), p*4^(p - 1), (A002697) (x = 4, y = 4), (p^p-1)/(p-1), (A023037), p^p, (A000312, A051674). . The generalized cuban primes A007645 are a subsequence, as are the quintan primes A002649, the septan primes and so on. All primes in this sequence less than 1031 are generalized cuban primes. 1031 is an element because 1031 = f(5,2) where f(x,y) = x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4, however 1031 is not a cuban prime because 1030 is not divisible by 6.
Links
- Peter Luschny, Table of n, a(n) for n = 1..10000
- Étienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
Crossrefs
Programs
-
Julia
using Primes function isA300332(n) logn = log(n)^1.161 K = Int(floor(5.383*logn)) M = Int(floor(2*(n/3)^(1/2))) k = 2 while k <= K if k == 7 K = Int(floor(4.864*logn)) M = Int(ceil(2*(n/11)^(1/4))) end for y in 2:M, x in 1:y r = x == y ? k*y^(k - 1) : div(x^k - y^k, x - y) n == r && return true end k = nextprime(k+1) end return false end A300332list(upto) = [n for n in 1:upto if isA300332(n)] println(A300332list(200))
Comments