cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300332 Integers of the form Sum_{j in 0:p-1} x^j*y^(p-j-1) where x and y are positive integers with max(x, y) >= 2 and p is some prime.

Original entry on oeis.org

3, 4, 7, 12, 13, 19, 21, 27, 28, 31, 37, 39, 43, 48, 49, 52, 57, 61, 63, 67, 73, 75, 76, 79, 80, 84, 91, 93, 97, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 147, 148, 151, 156, 157, 163, 169, 171, 172, 175, 181, 183, 189, 192, 193, 196, 199
Offset: 1

Views

Author

Peter Luschny, Mar 03 2018

Keywords

Comments

Equivalently these are the integers represented by a cyclotomic binary form Phi_p(x,y) where p is prime and x and y are positive integers with max(x,y) >= 2. A cyclotomic binary form (over Z) is a homogeneous polynomial in two variables of the form f(x, y) = y^phi(k)*Phi(k, x/y) where Phi(k, z) is a cyclotomic polynomial of index k and phi is Euler's totient function.
An efficient and safe calculation of this sequence requires a precise knowledge of the range of possible solutions of the associated Diophantine equations. The bounds used in the Julia program below were specified by Fouvry, Levesque and Waldschmidt.

Examples

			Let p denote an odd prime. Subsequences are numbers of the form
2^p - 1,         (A001348) (x = 1, y = 2) (Mersenne numbers),
p*2^(p - 1),     (A299795) (x = 2, y = 2),
(3^p - 1)/2,     (A003462) (x = 1, y = 3),
3^p - 2^p,       (A135171) (x = 2, y = 3),
p*3^(p - 1),     (A027471) (x = 3, y = 3),
(4^p - 1)/3,     (A002450) (x = 1, y = 4),
2^(p-1)*(2^p-1), (A006516) (x = 2, y = 4),
4^p - 3^p,       (A005061) (x = 3, y = 4),
p*4^(p - 1),     (A002697) (x = 4, y = 4),
(p^p-1)/(p-1),   (A023037),
p^p,             (A000312, A051674).
.
The generalized cuban primes A007645 are a subsequence, as are the quintan primes A002649, the septan primes and so on.
All primes in this sequence less than 1031 are generalized cuban primes. 1031 is an element because 1031 = f(5,2) where f(x,y) = x^4 + y*x^3 + y^2*x^2 + y^3*x + y^4, however 1031 is not a cuban prime because 1030 is not divisible by 6.
		

Crossrefs

Programs

  • Julia
    using Primes
    function isA300332(n)
        logn = log(n)^1.161
        K = Int(floor(5.383*logn))
        M = Int(floor(2*(n/3)^(1/2)))
        k = 2
        while k <= K
            if k == 7
                K = Int(floor(4.864*logn))
                M = Int(ceil(2*(n/11)^(1/4)))
            end
            for y in 2:M, x in 1:y
                r = x == y ? k*y^(k - 1) : div(x^k - y^k, x - y)
                n == r && return true
            end
            k = nextprime(k+1)
        end
        return false
    end
    A300332list(upto) = [n for n in 1:upto if isA300332(n)]
    println(A300332list(200))