This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300333 #11 Mar 07 2018 15:58:12 %S A300333 0,0,2,2,0,0,3,0,0,0,0,3,3,0,0,0,0,0,3,0,3,0,0,0,0,0,3,3,0,0,5,0,0,0, %T A300333 0,0,3,0,3,0,0,0,3,0,0,0,0,3,3,0,0,3,0,0,0,0,3,0,0,0,3,0,3,0,0,0,3,0, %U A300333 0,0,0,0,3,0,3,3,0,0,3,5,0,0,0,3,0,0,0,0,0,0,3,0,3,0,0,0,3,0,0,0,0,0,3,0,0,0,0,3,3,0,3,3,0,0,0,0,3,0,0,0,5 %N A300333 a(n) = max{ p prime | n = Sum_{j in 0:p-1} x^j*y^(p-j-1)} where x and y are positive integers with max(x, y) >= 2 or 0 if no such representation exists. %C A300333 All prime numbers appear as values. The earliest appearance of the prime p has the index 2^p - 1 (Mersenne number). %C A300333 The indices of the nonzero values are in A300332. %H A300333 Peter Luschny, <a href="/A300333/b300333.txt">Table of n, a(n) for n = 1..10000</a> %H A300333 Étienne Fouvry, Claude Levesque, Michel Waldschmidt, <a href="https://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017. %e A300333 Let f(x,y) = y^2 + x*y + x^2, g(x,y) = y^6 + x*y^5 + x^2*y^4 + x^3*y^3 + x^4*y^2 + x^5*y + x^6 and h(x,y) = Sum_{j in 0:10} x^j*y^(10-j). Then %e A300333 a(49) = 3 because 49 = f(5, 3). %e A300333 a(217) = 3 because 217 = f(13, 3). %e A300333 a(448) = 7 because 448 = g(2, 2). %e A300333 a(2047) = 11 because 2047 = h(2, 1). %o A300333 (Julia) %o A300333 using Primes, Nemo %o A300333 function A300333(n) %o A300333 R, z = PolynomialRing(ZZ, "z") %o A300333 N = QQ(n) %o A300333 # Bounds from Fouvry & Levesque & Waldschmidt %o A300333 logn = log(n)^1.161 %o A300333 K = Int(floor(5.383*logn)) %o A300333 M = Int(floor(2*(n/3)^(1/2))) %o A300333 k, p = 2, 0 %o A300333 while k <= K %o A300333 if k == 7 %o A300333 K = Int(ceil(4.864*logn)) %o A300333 M = Int(ceil(2*(n/11)^(1/4))) %o A300333 end %o A300333 e = Int(eulerphi(ZZ(k))) %o A300333 c = cyclotomic(k, z) %o A300333 for y in 2:M, x in 1:y %o A300333 N == y^e*subst(c, QQ(x,y)) && (p = k) %o A300333 end %o A300333 k = nextprime(k+1) %o A300333 end %o A300333 return p %o A300333 end %o A300333 A300333list(upto) = [A300333(n) for n in 1:upto] %o A300333 println(A300333list(121)) %Y A300333 Cf. A300332, A001348. %K A300333 nonn %O A300333 1,3 %A A300333 _Peter Luschny_, Mar 03 2018