cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300354 Number of enriched p-trees of weight n with distinct leaves.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 8, 8, 13, 17, 54, 56, 98, 125, 195, 500, 606, 921, 1317, 1912, 2635, 6667, 7704, 12142, 16958, 24891, 33388, 47792, 106494, 126475, 195475, 268736, 393179, 523775, 750251, 979518, 2090669, 2457315, 3759380, 5066524, 7420874, 9726501, 13935546
Offset: 0

Views

Author

Gus Wiseman, Mar 03 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a sequence of two or more enriched p-trees with weakly decreasing weights summing to n.

Examples

			The a(6) = 8 enriched p-trees with distinct leaves: 6, (42), (51), ((31)2), ((32)1), (3(21)), ((21)3), (321).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    ept[q_]:=ept[q]=If[Length[q]===1,1,Total[Times@@@Map[ept,Join@@Function[sptn,Join@@@Tuples[Permutations/@GatherBy[sptn,Total]]]/@Select[sps[q],Length[#]>1&],{2}]]];
    Table[Total[ept/@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,30}]

Formula

a(n) = Sum_{i=1..A000009(n)} A299203(A246867(n,i)).