cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A300219 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that both x and 4*x - 3*y are powers of 4 (including 4^0 = 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 2, 1, 5, 2, 2, 1, 3, 3, 1, 1, 2, 2, 2, 1, 8, 3, 2, 3, 4, 3, 4, 2, 8, 5, 4, 1, 7, 6, 4, 5, 1, 3, 6, 2, 9, 6, 3, 2, 8, 4, 2, 1, 5, 3, 7, 3, 4, 6, 3, 3, 7, 4, 5, 1, 3, 5, 3, 1, 2, 9, 4, 2, 11, 3, 6, 2, 6, 7, 3, 2, 4, 5, 4, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 28 2018

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 2, 3, 5, 15, 37, 83, 263). Also, for each n = 2,3,... we can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and 4*x - 3*y lie in the set {2^(2k+1): k = 0,1,...}.
(ii) Let r be 0 or 1, and let n > r. Then n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and x + 3*y belong to the set {2^(2k+r): k = 0,1,2,...}, unless n has the form 2^(2k+r)*81503 with k a nonnegative integer and hence n^2 = (2^(2k+r)*28^2)^2 + (2^(2k+r)*80)^2 + (2^(2k+r)*55937)^2 + (2^(2k+r)*59272)^2 with 2^(2k+r)*28^2 = 2^r*(2^k*28)^2 and 2^(2k+r)*28^2 + 3*(2^(2k+r)*80) = 2^(2(k+5)+r). So we always can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x/2^r is a square and (x+3*y)/2^r is a power of 4.
In arXiv:1701.05868 the author proved that for each r = 0,1 and n > r we can write n^2 as (2^(2k+r))^2 + x^2 + y^2 + z^2 with k,x,y,z nonnegative integers.
We have verified both parts of the conjecture for n up to 10^7.

Examples

			a(2) = 1 since 2^2 = 1^2 + 1^2 + 1^2 + 1^2 with 1 = 4^0 and 4*1 - 3*1 = 4^0.
a(3) = 1 since 3^2 = 1^2 + 0^2 + 2^2 + 2^2 with 1 = 4^0 and 4*1 - 3*0 = 4^1.
a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4 = 4^1 and 4*4 - 3*0 = 4^2.
a(15) = 1 since 15^2 = 4^2 + 4^2 + 7^2 + 12^2 with 4 = 4^1 and 4*4 - 3*4 = 4^1.
a(37) = 1 since 37^2 = 16^2 + 16^2 + 4^2 + 29^2 with 16 = 4^2 and 4*16 - 3*16 = 4^2.
a(83) = 1 since 83^2 = 4^2 + 4^2 + 56^2 + 61^2 with 4 = 4^1 and 4*4 - 3*4 = 4^1.
a(263) = 1 since 263^2 = 4^2 + 5^2 + 22^2 + 262^2 with 4 = 4^1 and 4*4 - 3*5 = 4^0.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[n^2-16^k-((4^(k+1)-4^m)/3)^2-z^2],r=r+1],{k,0,Log[4,n]},{m,Ceiling[Log[4,Max[1,4^(k+1)-3*Sqrt[n^2-16^k]]]],k+1},{z,0,Sqrt[(n^2-16^k-((4^(k+1)-4^m)/3)^2)/2]}];Print[n," ",r];Label[aa],{n,1,80}]

A299537 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that x or y is a power of 4 (including 4^0 = 1) and x + 3*y is also a power of 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 4, 3, 1, 1, 2, 6, 1, 1, 2, 3, 1, 1, 8, 6, 2, 4, 3, 8, 3, 1, 6, 8, 4, 1, 6, 10, 3, 4, 2, 5, 6, 3, 4, 8, 1, 1, 7, 5, 1, 1, 5, 6, 4, 2, 4, 13, 5, 6, 7, 5, 5, 1, 3, 7, 2, 1, 3, 12, 6, 2, 11, 5, 5, 3, 7, 11, 2, 1, 6, 13, 5, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 04 2018

Keywords

Comments

Conjecture (i): a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m with k = 0,1,2,... and m = 1, 2, 3, 5, 7, 11, 15, 19, 43, 47, 135, 1103.
Conjecture (ii): For any integer n > 1, we can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that 2*x or 2*y is a power of 4 and 2*(x+3*y) is also a power of 4.
Note that 81503^2 cannot be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and both x and x + 3*y in the set {4^k: k = 0,1,2,...}. However, 81503^2 = 16372^2 + 4^2 + 52372^2 + 60265^2 with 4 = 4^1 and 16372 + 3*4 = 4^7.
We have verified that the conjecture for n up to 10^7.
See also the related comments in A300219 and A300360, and a similar conjecture in A299794.

Examples

			a(2) = 1 since 2^2 = 1^2 + 1^2 + 1^2 + 1^2 with 1 = 4^0 and 1 + 3*1 = 4^1.
a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4 = 4^1 and 4 + 3*0 = 4^1.
a(19) = 1 since 19^2 = 1^2 + 0^2 + 6^2 + 18^2 with 1 = 4^0 and 1 + 3*0 = 4^0.
a(43) = 1 since 43^2 = 4^2 + 20^2 + 8^2 + 37^2 with 4 = 4^1 and 4 + 3*20 = 4^3.
a(135) = 1 since 135^2 = 16^2 + 16^2 + 17^2 + 132^2 with 16 = 4^2 and 16 + 3*16 = 4^3.
a(1103) = 1 since 1103^2 = 4^2 + 4^2 + 716^2 + 839^2 with 4 = 4^1 and 4 + 3*4 = 4^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]];
    tab={};Do[r=0;Do[If[(Pow[y]||Pow[4^k-3y])&&SQ[n^2-y^2-(4^k-3y)^2-z^2],r=r+1],{k,0,Log[4,Sqrt[10]*n]},{y,0,Min[n,4^k/3]},{z,0,Sqrt[Max[0,(n^2-y^2-(4^k-3y)^2)/2]]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A299794 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that x or 2*y is a power of 4 (including 4^0 = 1) and x + 15*y is also a power of 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 1, 1, 2, 3, 1, 1, 2, 2, 1, 1, 6, 3, 1, 3, 3, 2, 2, 1, 3, 4, 2, 1, 5, 4, 4, 5, 1, 2, 3, 2, 5, 5, 2, 2, 8, 2, 2, 1, 5, 2, 4, 3, 4, 4, 4, 3, 6, 3, 2, 3, 3, 4, 3, 1, 3, 6, 4, 3, 11, 2, 2, 2, 4, 5, 1, 2, 3, 5, 3, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 04 2018

Keywords

Comments

Conjecture 1: a(n) > 0 for all n > 0. Also, for any integer n > 1 we can write n^2 as x^2 + y^2 + z^2 + w^2 with x >= y >= 0 <= z <= w such that 2*x or y is a power of 4 and also x + 15*y = 2^(2k+1) for some k = 0,1,2,....
Conjecture 2: Let d be 2 or 8, and let r be 0 or 1. Then any positive square n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x or y is a power of 2 and x + d*y = 2^(2k+r) for some k = 0,1,2,....
We have verified Conjecture 1 for n up to 10^7.
See also A299537, A300219 and A300396 for similar conjectures.

Examples

			a(2) = 1 since 2^2 = 1^2 + 1^2 + 1^2 + 1^2 with 1 = 4^0 and 1 + 15*1 = 4^2.
a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4 = 4^1 and 4 + 15*0 = 4^1.
a(19) = 1 since 19^2 = 1^2 + 0^2 + 6^2 + 18^2 with 1 = 4^0 and 1 + 15*0 = 4^0.
a(159) = 1 since 159^2 = 34^2 + 2^2 + 75^2 + 136^2 with 2*2 = 4^1 and 34 + 15*2 = 4^3.
a(1998) = 1 since 1998^2 = 256^2 + 256^2 + 286^2 + 1944^2 with 256 = 4^4 and 256 + 15*256 = 4^6.
a(3742) = 1 since 3742^2 = 2176^2 + 128^2 + 98^2 + 3040^2 with 2*128 = 4^4 and 2176 + 15*128 = 4^6.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]];
    tab={};Do[r=0;Do[If[Pow[2y]||Pow[4^k-15y],Do[If[SQ[n^2-y^2-(4^k-15y)^2-z^2],r=r+1],{z,0,Sqrt[Max[0,(n^2-y^2-(4^k-15y)^2)/2]]}]],
    {k,0,Log[4,Sqrt[226]*n]},{y,0,Min[n,4^(k-2)]}];tab=Append[tab,r],{n,1,80}];Print[tab]

A300362 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 2*y and (z + 2*w)/3 are squares and w is even.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 4, 2, 4, 1, 2, 2, 2, 3, 2, 1, 5, 1, 5, 2, 3, 3, 3, 1, 1, 2, 3, 1, 4, 3, 5, 1, 6, 6, 6, 1, 4, 6, 8, 2, 4, 4, 3, 1, 5, 3, 9, 1, 4, 4, 5, 3, 10, 4, 7, 3, 9, 2, 14, 2, 6, 2, 6, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 04 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 7, 9, 14, 19, 22, 26, 34, 41, 4^k*m (k = 0,1,... and m = 1, 2, 3, 5, 10, 11, 13, 15).

Examples

			 a(9) = 1 since 9^2 = 9^2 + 0^2 + 0^2 + 0^2 with 9 + 2*0 = 3^2 and 0 + 2*0 = 3*0^2.
a(13) = 1 since 13^2 = 4^2 + 0^2 + 3^2 + 12^2 with 4 + 2*0 = 2^2 and 3 + 2*12 = 3*3^2.
a(14) = 1 since 14^2 = 4^2 + 6^2 + 12^2 + 0^2 with 4 + 2*6 = 4^2 and 12 + 2*0 = 3*2^2.
a(15) = 1 since 15^2 = 9^2 + 0^2 + 12^2 + 0^2 with 9 + 2*0 = 3^2 and 12 + 2*0 = 3*2^2.
a(41) = 1 since 41 = 38^2 + 13^2 + 8^2 + 2^2 with 38 + 2*13 = 8^2 and 8 + 2*2 = 3*2^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[x+2y]&&SQ[(n^2-x^2-y^2-z^2)/4]&&SQ[(z+2*Sqrt[n^2-x^2-y^2-z^2])/3],r=r+1],{x,0,n},{y,0,Sqrt[n^2-x^2]},{z,0,Sqrt[n^2-x^2-y^2]}];tab=Append[tab,r],{n,0,80}];Print[tab]

A300396 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that 2*x or y is a power of 4 (including 4^0 = 1) and x + 63*y = 2^(2k+1) for some k = 0,1,2,....

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 3, 4, 2, 2, 4, 1, 2, 1, 1, 2, 4, 3, 1, 1, 2, 1, 6, 2, 2, 2, 5, 1, 4, 1, 2, 6, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 2, 1, 7, 3, 1, 4, 1, 2, 8, 1, 3, 7, 3, 4, 6, 3, 4, 4, 6, 4, 3, 2, 4, 3, 1, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 05 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 5, 13, 25, 29, 59, 61, 79, 91, 95, 101, 103, 1315, 2^k (k = 1,2,3,...), 2^(2k+1)*m (k = 0,1,2,... and m = 3, 5, 7, 11, 15, 19, 23, 887).
This is stronger than the conjecture that A300360(n) > 0 for all n > 1. Note that a(387) = 3 < A300360(387) = 4 and a(1774) = 1 < A300360(1774) = 2.
We have verified that a(n) > 0 for all n = 2..10^7.
See also A299537, A299794 and A300219 for similar conjectures.

Examples

			a(29) = 1 since 29^2 = 2^2 + 2^2 + 7^2 + 28^2 with 2*2 = 4^1 and 2 + 63*2 = 2^7.
a(86) = 2 since 65^2 + 1^2 + 19^2 + 53^2 = 65^2 + 1^2 + 31^2 + 47^2 with 1 = 4^0 and 65 + 63*1 = 2^7.
a(1774) = 1 since 1774^2 = 8^2 + 520^2 + 14^2 + 1696^2 with 2*8 = 4^2 and 8 + 63*520 = 2^15.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]];
    tab={};Do[r=0;Do[If[Pow[y]||Pow[(2*4^k-63y)/2],Do[If[SQ[n^2-y^2-(2*4^k-63y)^2-z^2],r=r+1],{z,0,Sqrt[Max[0,(n^2-y^2-(2*4^k-63y)^2)/2]]}]],{k,0,Log[4,Sqrt[63^2+1]*n/2]},{y,0,Min[n,2*4^k/63]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Showing 1-5 of 5 results.