cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300362 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x + 2*y and (z + 2*w)/3 are squares and w is even.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 4, 2, 4, 1, 2, 2, 2, 3, 2, 1, 5, 1, 5, 2, 3, 3, 3, 1, 1, 2, 3, 1, 4, 3, 5, 1, 6, 6, 6, 1, 4, 6, 8, 2, 4, 4, 3, 1, 5, 3, 9, 1, 4, 4, 5, 3, 10, 4, 7, 3, 9, 2, 14, 2, 6, 2, 6, 1
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 04 2018

Keywords

Comments

Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 7, 9, 14, 19, 22, 26, 34, 41, 4^k*m (k = 0,1,... and m = 1, 2, 3, 5, 10, 11, 13, 15).

Examples

			 a(9) = 1 since 9^2 = 9^2 + 0^2 + 0^2 + 0^2 with 9 + 2*0 = 3^2 and 0 + 2*0 = 3*0^2.
a(13) = 1 since 13^2 = 4^2 + 0^2 + 3^2 + 12^2 with 4 + 2*0 = 2^2 and 3 + 2*12 = 3*3^2.
a(14) = 1 since 14^2 = 4^2 + 6^2 + 12^2 + 0^2 with 4 + 2*6 = 4^2 and 12 + 2*0 = 3*2^2.
a(15) = 1 since 15^2 = 9^2 + 0^2 + 12^2 + 0^2 with 9 + 2*0 = 3^2 and 12 + 2*0 = 3*2^2.
a(41) = 1 since 41 = 38^2 + 13^2 + 8^2 + 2^2 with 38 + 2*13 = 8^2 and 8 + 2*2 = 3*2^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[x+2y]&&SQ[(n^2-x^2-y^2-z^2)/4]&&SQ[(z+2*Sqrt[n^2-x^2-y^2-z^2])/3],r=r+1],{x,0,n},{y,0,Sqrt[n^2-x^2]},{z,0,Sqrt[n^2-x^2-y^2]}];tab=Append[tab,r],{n,0,80}];Print[tab]