A300382 Dirichlet series for a cubic module of rank 6.
1, 0, 0, 8, 6, 0, 0, 0, 10, 0, 24, 0, 0, 0, 0, 32, 0, 0, 40, 48, 0, 0, 0, 0, 30, 0, 0, 0, 60, 0, 64, 0, 0, 0, 0, 80, 0, 0, 0, 0, 84, 0, 0, 192, 60, 0, 0, 0, 51, 0, 0, 0, 0, 0, 144, 0, 0, 0, 120, 0, 124, 0, 0, 130, 0, 0, 0, 0, 0, 0, 144, 0, 0, 0, 0, 320, 0, 0, 160, 192, 91, 0, 0, 0, 0, 0, 0, 0, 180, 0, 0, 0, 0, 0, 240, 0, 0, 0, 240, 239, 204, 0, 0, 0, 0, 0, 0, 0, 220, 0, 0, 0, 0, 0, 0, 480, 0, 0, 0, 0, 405
Offset: 1
Links
- M. Baake, Solution of the coincidence problem in dimensions d<=4, arxiv:math/0605222 (2006), (5.12)
Crossrefs
Cf. A031365.
Programs
-
Maple
read("transforms") : # expansion of 1/(1-5^(-s)) in (5.10) L1 := [1,seq(0,i=2..200)] : for k from 1 do if 5^k <= nops(L1) then L1 := subsop(5^k=1,L1) ; else break ; end if; end do: # multiplication with 1/(1-p^(-2s)) in (5.10) for i from 1 do p := ithprime(i) ; if modp(p,5) = 2 or modp(p,5)=3 then Laux := [1,seq(0,i=2..200)] : for k from 1 do if p^(2*k) <= nops(Laux) then Laux := subsop(p^(2*k)=1,Laux) ; else break ; end if; end do: L1 := DIRICHLET(L1,Laux) ; end if; if p > nops(L1) then break; end if; end do: # multiplication with 1/(1-p^(-s))^2 in (5.10) for i from 1 do p := ithprime(i) ; if modp(p,5) = 1 or modp(p,5)=4 then Laux := [1,seq(0,i=2..200)] : for k from 1 do if p^k <= nops(Laux) then Laux := subsop(p^k=k+1,Laux) ; else break ; end if; end do: L1 := DIRICHLET(L1,Laux) ; end if; if p > nops(L1) then break; end if; end do: # this is now Zeta_L(s), seems to be A035187 # print(L1) ; # generate Zeta_L(s-1) L1shft := [seq(op(i,L1)*i,i=1..nops(L1))] ; # generate 1/Zeta_L(s) L1x := add(op(i,L1)*x^(i-1),i=1..nops(L1)) : taylor(1/L1x,x=0,nops(L1)) : L1i := gfun[seriestolist](%) ; # generate 1/Zeta_L(2s) L1i2 := [1,seq(0,i=2..nops(L1))] ; for k from 2 to nops(L1i) do if k^2 < nops(L1i2) then L1i2 := subsop(k^2=op(k,L1i),L1i2) ; else break ; end if; end do: # generate Zeta_L(s)*Zeta_L(s-1) DIRICHLET(L1,L1shft) ; # generate Zeta_L(s)*Zeta_L(s-1)/Zeta_L(2s) L1 := DIRICHLET(%,L1i2) ; # generate 1/(1+4^(-s)) Laux := [1,seq(0,i=2..nops(L1))] : for k from 1 do if 4^k <= nops(Laux) then Laux := subsop(4^k=(-1)^k,Laux) ; else break; end if ; end do: # generate Zeta_L(s)*Zeta_L(s-1)/Zeta_L(2s)/(1+4^(-s)) L1 := DIRICHLET(L1,Laux) ; # generate 1+4^(1-s) Laux := [1,seq(0,i=2..3),4,seq(0,i=5..nops(L1))] ; DIRICHLET(L1,Laux) ; # R. J. Mathar, Mar 04 2018
Comments