cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300383 In the ranked poset of integer partitions ordered by refinement, a(n) is the size of the lower ideal generated by the partition with Heinz number n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 5, 1, 3, 3, 7, 2, 11, 5, 5, 1, 15, 3, 22, 3, 8, 7, 30, 2, 6, 11, 4, 5, 42, 5, 56, 1, 11, 15, 11, 3, 77, 22, 17, 3, 101, 8, 135, 7, 7, 30, 176, 2, 14, 6, 23, 11, 231, 4, 15, 5, 33, 42, 297, 5, 385, 56, 11, 1, 23, 11, 490, 15, 45, 11, 627, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The size of the corresponding upper ideal is A317141(n). Chains are A213427(n) and maximal chains are A002846(n).

Examples

			The a(30) = 5 partitions are (321), (2211), (3111), (21111), (111111), with corresponding Heinz numbers: 30, 36, 40, 48, 64.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Sort/@Join@@@Tuples[IntegerPartitions/@primeMS[n]]]],{n,50}]

Formula

a(prime(n)) = A000041(n).
a(x * y) <= a(x) * a(y).