cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300384 In the ranked poset of integer partitions ordered by refinement, number of maximal chains from the local minimum to the partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 11, 2, 2, 1, 33, 1, 116, 1, 5, 4, 435, 1, 2, 11, 1, 2, 1832, 2, 8167, 1, 12, 33, 10, 1, 39700, 116, 37, 1, 201785, 5, 1099449, 4, 3, 435, 6237505, 1, 19, 2, 123, 11, 37406458, 1, 27, 2, 474, 1832, 232176847, 2, 1513796040
Offset: 1

Views

Author

Gus Wiseman, Mar 04 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(21) = 5 maximal chains are the rows:
(111111)<(21111)<(2211)<(222)<(42)
(111111)<(21111)<(2211)<(411)<(42)
(111111)<(21111)<(2211)<(321)<(42)
(111111)<(21111)<(3111)<(411)<(42)
(111111)<(21111)<(3111)<(321)<(42)
		

Crossrefs

Programs

  • Mathematica
    pcovs[ptn_]:=Select[Union[Reverse/@Sort/@Join@@@Tuples[IntegerPartitions/@ptn]],Length[#]===Length[ptn]+1&];
    coc[ptn_]:=coc[ptn]=If[Max[ptn]===1,1,Total[coc/@pcovs[ptn]]];
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[coc[Reverse[primeMS[n]]],{n,50}]