A300396 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that 2*x or y is a power of 4 (including 4^0 = 1) and x + 63*y = 2^(2k+1) for some k = 0,1,2,....
0, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 3, 1, 3, 4, 2, 2, 4, 1, 2, 1, 1, 2, 4, 3, 1, 1, 2, 1, 6, 2, 2, 2, 5, 1, 4, 1, 2, 6, 3, 3, 3, 1, 2, 3, 4, 3, 3, 2, 4, 2, 2, 1, 7, 3, 1, 4, 1, 2, 8, 1, 3, 7, 3, 4, 6, 3, 4, 4, 6, 4, 3, 2, 4, 3, 1, 2
Offset: 1
Keywords
Examples
a(29) = 1 since 29^2 = 2^2 + 2^2 + 7^2 + 28^2 with 2*2 = 4^1 and 2 + 63*2 = 2^7. a(86) = 2 since 65^2 + 1^2 + 19^2 + 53^2 = 65^2 + 1^2 + 31^2 + 47^2 with 1 = 4^0 and 65 + 63*1 = 2^7. a(1774) = 1 since 1774^2 = 8^2 + 520^2 + 14^2 + 1696^2 with 2*8 = 4^2 and 8 + 63*520 = 2^15.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; Pow[n_]:=Pow[n]=IntegerQ[Log[4,n]]; tab={};Do[r=0;Do[If[Pow[y]||Pow[(2*4^k-63y)/2],Do[If[SQ[n^2-y^2-(2*4^k-63y)^2-z^2],r=r+1],{z,0,Sqrt[Max[0,(n^2-y^2-(2*4^k-63y)^2)/2]]}]],{k,0,Log[4,Sqrt[63^2+1]*n/2]},{y,0,Min[n,2*4^k/63]}];tab=Append[tab,r],{n,1,80}];Print[tab]
Comments