cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300401 Array T(n,k) = n*(binomial(k, 2) + 1) + k*(binomial(n, 2) + 1) read by antidiagonals.

This page as a plain text file.
%I A300401 #61 Apr 10 2019 21:54:35
%S A300401 0,1,1,2,2,2,3,4,4,3,4,7,8,7,4,5,11,14,14,11,5,6,16,22,24,22,16,6,7,
%T A300401 22,32,37,37,32,22,7,8,29,44,53,56,53,44,29,8,9,37,58,72,79,79,72,58,
%U A300401 37,9,10,46,74,94,106,110,106,94,74,46,10,11,56,92,119
%N A300401 Array T(n,k) = n*(binomial(k, 2) + 1) + k*(binomial(n, 2) + 1) read by antidiagonals.
%C A300401 Antidiagonal sums are given by 2*A055795.
%C A300401 Rows/columns n are binomial transform of {n, A152947(n+1), n, 0, 0, 0, ...}.
%C A300401 Some primes in the array are
%C A300401 n = 1: {2, 7, 11, 29, 37, 67, 79, 137, 191, 211, 277, 379, ...} = A055469, primes of the form k*(k + 1)/2 + 1;
%C A300401 n = 3: {3, 7, 37, 53, 479, 653, 1249, 1619, 2503, 3727, 4349, 5737, 7109, 8179, 9803, 11839, 12107, ...};
%C A300401 n = 4: {11, 37, 79, 137, 211, 821, 991, 1597, 1831, 2081, 2347, ...} = A188382, primes of the form 8*(2*k - 1)^2 + 2*(2*k - 1) + 1.
%D A300401 Miklós Bóna, Introduction to Enumerative Combinatorics, McGraw-Hill, 2007.
%D A300401 L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel Publishing Company, 1974.
%D A300401 R. P. Stanley, Enumerative Combinatorics, second edition, Cambridge University Press, 2011.
%H A300401 Michael De Vlieger, <a href="/A300401/b300401.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened).
%H A300401 Cheyne Homberger, <a href="https://arxiv.org/abs/1410.2657">Patterns in Permutations and Involutions: A Structural and Enumerative Approach</a>, arXiv preprint 1410.2657 [math.CO], 2014.
%H A300401 Franck Ramaharo, <a href="https://arxiv.org/abs/1902.08989">A generating polynomial for the two-bridge knot with Conway's notation C(n,r)</a>, arXiv:1902.08989 [math.CO], 2019.
%F A300401 T(n,k) = T(k,n) = n*A152947(k+1) + k*A152947(n+1).
%F A300401 T(n,0) = A001477(n).
%F A300401 T(n,1) = A000124(n).
%F A300401 T(n,2) = A014206(n).
%F A300401 T(n,3) = A273465(3*n+2).
%F A300401 T(n,4) = A084849(n+1).
%F A300401 T(n,n) = A179000(n-1,n), n >= 1.
%F A300401 T(2*n,2*n) = 8*A081436(n-1), n >= 1.
%F A300401 T(2*n+1,2*n+1) = 2*A006000(2*n+1).
%F A300401 T(n,n+1) = A188377(n+3).
%F A300401 T(n,n+2) = A188377(n+2), n >= 1.
%F A300401 Sum_{k=0..n} T(k,n-k) = 2*(binomial(n, 4) + binomial(n, 2)).
%F A300401 G.f.: -((2*x*y - y - x)*(2*x*y - y - x + 1))/(((x - 1)*(y - 1))^3).
%F A300401 E.g.f.: (1/2)*(x + y)*(x*y + 2)*exp(x + y).
%e A300401 The array T(n,k) begins
%e A300401 0     1    2    3    4     5     6     7     8     9    10    11  ...
%e A300401 1     2    4    7   11    16    22    29    37    46    56    67  ...
%e A300401 2     4    8   14   22    32    44    58    74    92   112   134  ...
%e A300401 3     7   14   24   37    53    72    94   119   147   178   212  ...
%e A300401 4    11   22   37   56    79   106   137   172   211   254   301  ...
%e A300401 5    16   32   53   79   110   146   187   233   284   340   401  ...
%e A300401 6    22   44   72  106   146   192   244   302   366   436   512  ...
%e A300401 7    29   58   94  137   187   244   308   379   457   542   634  ...
%e A300401 8    37   74  119  172   233   302   379   464   557   658   767  ...
%e A300401 9    46   92  147  211   284   366   457   557   666   784   911  ...
%e A300401 10   56  112  178  254   340   436   542   658   784   920  1066  ...
%e A300401 11   67  134  212  301   401   512   634   767   911  1066  1232  ...
%e A300401 12   79  158  249  352   467   594   733   884  1047  1222  1409  ...
%e A300401 13   92  184  289  407   538   682   839  1009  1192  1388  1597  ...
%e A300401 14  106  212  332  466   614   776   952  1142  1346  1564  1796  ...
%e A300401 15  121  242  378  529   695   876  1072  1283  1509  1750  2006  ...
%e A300401 16  137  274  427  596   781   982  1199  1432  1681  1946  2227  ...
%e A300401 17  154  308  479  667   872  1094  1333  1589  1862  2152  2459  ...
%e A300401 18  172  344  534  742   968  1212  1474  1754  2052  2368  2702  ...
%e A300401 19  191  382  592  821  1069  1336  1622  1927  2251  2594  2956  ...
%e A300401 20  211  422  653  904  1175  1466  1777  2108  2459  2830  3221  ...
%e A300401 ...
%e A300401 The inverse binomial transforms of the columns are
%e A300401 0     1    2    3    4     5     6     7     8     9    10    11  ...  A001477
%e A300401 1     1    2    4    7    11    22    29    37    45    56    67  ...  A152947
%e A300401 0     1    2    3    4     5     6     7     8     9    10    11  ...  A001477
%e A300401 0     0    0    0    0     0     0     0     0     0     0     0  ...
%e A300401 0     0    0    0    0     0     0     0     0     0     0     0  ...
%e A300401 0     0    0    0    0     0     0     0     0     0     0     0  ...
%e A300401 ...
%p A300401 T := (n, k) -> n*(binomial(k, 2) + 1) + k*(binomial(n, 2) + 1);
%p A300401 for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
%t A300401 T[n_, k_] := n (Binomial[k, 2] + 1) + k (Binomial[n, 2] + 1);
%t A300401 Table[T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 07 2018 *)
%o A300401 (Maxima)
%o A300401 T(n, k) := n*(binomial(k, 2) + 1) + k*(binomial(n, 2) + 1)$
%o A300401 for n:0 thru 20 do
%o A300401   print(makelist(T(n, k), k, 0, 20));
%o A300401 (PARI) T(n, k) = n*(binomial(k,2) + 1) + k*(binomial(n,2) + 1);
%o A300401 tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Mar 12 2018
%Y A300401 Cf. A000124, A001477, A006000, A008815, A014206, A051601, A055469, A077028, A081436, A084849, A131074, A134394, A139600, A141387, A179000, A188377, A188382, A273465.
%K A300401 nonn,tabl
%O A300401 0,4
%A A300401 _Franck Maminirina Ramaharo_, Mar 05 2018