This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A300403 #11 Feb 16 2025 08:33:53 %S A300403 0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %T A300403 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %U A300403 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 %N A300403 Smallest integer i such that SSCG(i) >= n. %C A300403 The sequence grows very slowly. %C A300403 A subcubic graph is a graph where each vertex has degree <= 3 (cf. Baaz et al., 2011, p. 419). %C A300403 SSCG(n) gives the length of the longest sequence of simple subcubic graphs G_1, G_2, ..., G_i such that each G_i has at most i+n vertices and G_i is not a graph minor of G_j for any j > i. %H A300403 M. Baaz, C. H. Papadimitriou, H. W. Putnam, D. S. Scott and C. L. Harper, Jr., <a href="https://books.google.com/books?id=Tg0WXU5_8EgC&pg=PA419">Kurt Gödel and the Foundations of Mathematics: Horizons of Truth</a>, Cambridge University Press, 2011, ISBN 978-0-521-76144-4. %H A300403 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SimpleGraph.html">Simple Graph</a> %H A300403 Wikipedia, <a href="https://en.wikipedia.org/wiki/Friedman%27s_SSCG_function">Friedman's SSCG function</a> %H A300403 Wikipedia, <a href="https://en.wikipedia.org/wiki/Graph_minor">Graph minor</a> %e A300403 SSCG(0) = 2, so a(n) = 0 for n <= 2. %e A300403 SSCG(1) = 5, so a(n) = 1 for 3 <= n <= 5. %e A300403 SSCG(2) = 3*2^(3*2^95)-8 ~ 10^(3.5775*10^28), so a(n) = 2 for 6 <= n <= 3*2^(3*2^95)-8. %Y A300403 Cf. A090529, A300402, A300404. %K A300403 nonn %O A300403 1,6 %A A300403 _Felix Fröhlich_, Mar 05 2018